No. 12885

Ulinted States Court of $\mathfrak{z p p e a l s}$

for the Sintig Circuit.

CONSOLIDATED VULTEE AIRCRAF「 CORPORATION and AMERICAN AIR LINES, INC.,

Appellants,
vs.
MAURICE A. GARBELL, INC., and GARBELL RESEARCH FOUNDATION,

Appellees.

Transcript of kiecoro

Volume IV
Book of Exhibits
(Pages 835 to 1005)

> Appeal from the United States District Court, Southern District of California, Central Division.vs. Maurice A. Garbell, Inc.835
DEFENDANTS' EXHIBIT FF
Engineering Report
Date: November, 1941
No. 1484, Vol. I
No. Pages, 185
The Glenn L. Martin Company Baltimore
Model B-26 B1 \& C
Detail Specification GLM Spec. \#88B Contract
DA-W535AC-46

DA-W535AC-19342
Stress Analysis of Wing
Prepared By:
/s/ VINCENT COUDELLO,
/s/ PETER N. LAYTON, III,/s/ F. LEIGH NOYES.
Checked By:
/s/ RICHARD K. WENTZ,/s/ C. H. RIS,/s/ LEON R. COBAUGH.
Approved By:
/s/ P. C. MEDINA, A Project Stress Engineer,
/s/ G. N. MANGURIAN,
A Structural Design Engr.,
/s/ G. L. BRYAN, JR.,
Chief Structural Engr.
Revisions
Date Pages Affected By Remarks

Defendants' Exhibit FF-(Continued) Analysis of Wing
 Table of Contents

Page No.
References 3
Introduction 4
Part No. 1
General Data . 5
Wing Geometry . 5
Airplane Gross Weights 5
Sign Conventions 5
Reference Axis for Torsional Moments 6
Aerodynamic Center 6
Wing Planform (in chord plane)..... 7
Part No. 2
Spanwise Air-Load Distribution 8- 43
Spanwise Air-Load Distribution-
\quad Flaps Neutral 8
Curves of Spanwise Distribution
of Lift . 24
Curves of Spanwise Distribution
of Drag
Spanwise Air-Load Distribution-
Flaps Deflected 45°. 29
Curves of Spanwise Distribution
of Lift and Drag.
Chordwise Pressure Distribution 44- 72
Curves of Chordwise Pressure Distri-
bution .
Part No. 3
Air Load Shears and Moments
Normal Gross Weight (31,000 Lbs.) . . . 74-94
vs. Maurice A. Garbell, Inc. 837
Defendants' Exhibit FF-(Continued)Lift Load Shears, Bending Mo-ments and Torsional Moments74
Condition I-H.А.А. 78
Condition II-L.A.A. 79
Condition III-I.L.A.A. 80
Condition IV-I.H.A.A. 81
Drag Load Shears, Bending Mo- ments and Torsional Moments Condition I-H.A.A. 82
Condition II-L.A.A. 83
Condition III-I.L.A.A. 84
Condition IV-I.H.A.A. 85
Nacelle Pitching Moment 86
Nacelle Drag 88
Part No. 4
Unit Load Computations 90-147
Curve of Aerodynamic Moment Co- efficient 91
Aerodynamic Moment - Aileron Neu- tral 93
Aerodynamic Moment - Aileron De- flected 94
Landing Loads 134
Jacking Loads 143
Dead Weights 95
Wing Structure 98
Fuel 102
Fuel Tanks 106
Concentrated Weight Items 107
Curves of Shears \& Moments- Normal Gross Weight (31,000 lbs.) 114
838 Consol. Vultee Aircraft Corp., etc.
Defendants' Exhibit FF-(Conținued) Minimum Flying Weight $(24,200$ lbs.) 115
Curves of Shears \& Moments- Minimum Flying Weight (24,200 lbs.) 121
Overload (Maximum Range- 35,500 lbs.) 123
Curves of Shears \& Moments- Overload (Maximum Range- 35,500 lbs.) 133
Part No. 5
Net Design Load Computations 148-185
Flight Conditions 148-167
Normal Gross Weight ($31,000 \mathrm{lbs}$.) 148-164
Condition I-H.A.A. 149
Condition I - H.A.A. - Curves of Shears and Moments 152
Condition II-L.A.A. 153
Condition II-L.A.A. - Curves of Shears and Moments 156
Condition III-I.L.A.A. 157
Condition III-I.L.A.A. - Curves of Shears and Moments 160
Condition IV-I.H.A.A. 161
Condition IV-I.H.A.A. - Curves of Shears and Moments 164
Minimum Flying Weight (24,200 lbs.) 165
Overload (Maximum Range - 35,500lbs.)Summary of Shears and Moments forDesign Flight Conditions167

Defendants' Exhibit FF-(Continued)
Landing Conditions 171-177
Jacking Conditions 178-185
References-Volume I
(a) U. S. Army Air Corps "Spec. No. X-1803-A, Stress Analysis Criteria," dated Nov. 15, 1938.
(b) G.L.M. Spec. No. 88; "Detail Specification for Air Corps, Model B-26 Bombardment Airplane, Twin Engine."
(c) Army - Navy - Commerce Bulletin, ANC-1(1); April, 1938, "Spanwise Air Load Distribution."
(d) N.A.C.A. Confidential Memo. Report of Oct. 3, 1939, "Wing Tunnel Tests of a $1 / 8$ Scale Model of Martin 179 Bomber."
(e) N.A.C.A. Confidential Memo. Report of Oct. 7, 1939, "Additional Tests of $1 / 8$ Scale Model of Martin 179 Bomber."
(f) G.L.M. Engineering Report No. 1483, "Stress Analysis of Basic Flight Criteria, Model B-26, B1 \& C."
(g) G.L.M. Model B-26, B1 \& C Data Book.
(h) G.L.M. Engineering Report No. 1499, "Weight and Balance Report, Model B-26, B1 \& C."
(i) U. S. Army Air Corps "Handbook of Instructions for Airplane Designers," 8th Edition, revised to July 1, 1939.
(j) Letter to G. L. Martin Co. from U. S. Army Material Division, CKM-rf-51, October 28, 1939.

Defendants' Exhibit FF-(Continued)
(k) G.L.M. Engineering Report No. 1486, "Stress Analysis of Landing Gear, Model B-26, B1 \& C."
(1) G.L.M. Engineering Report No. 1485, "Stress Analysis of Fuselage, Model B-26, B1 \& C."
(m) G.L.M. Engineering Report No. 1154, "Stress Analysis of Wing, Model B-26."
(n) Army-Navy-Civil Bulletin, ANC-1(2), "Chordwise Airload Distribution"-Feb., 1939.

Introduction

The stress analysis of the wing for Air Corps Bomber Model B-26-B1\&C (Martin Model 179-15) consists of three volumes. Volume I contains the computations of the basic design loads, Volume II contains the stress analysis of the wing box, and Volume III contains the stress analysis of the ribs and structural details. The analysis of the fittings is made in G.L.M. Engineering Report No. 1488.

Volume I Consists of Five Parts:
Part 1-General Data.
Part 2-Spanwise and Chordwise Air Load Distribution.

Part 3-Air Load Computations-Shears, Bending Moments, and Torsional Moments.
Part 4 -Unit Load Computations-Dead Weight, Shears, Bending Moments, and Torsional Moments.

Part 5-Net Design Load Computations-Shears, Bending Moments, and Torsional Moments.
vs. Maurice A. Garbell, Inc.
841
Defendants' Exhibit FF-(Continued)
Part 1
General Data
Wing Geometry-Reference (f) and (g)
Span 71 ft.
Area 659 sq. ft.

Airfoil Section
Station 46.N.A.C.A. 0016.7-64
Tip (theoretical)..... Martin Revision
Root Chord (theoretical at CL).. 166.75 inches
Tip Chord (theoretical) 58.12 inches
Incidence (relative to thrust line) $\ldots .+31 / 2^{\circ}$
Mean Aerodynamic Chord... 121.5 in. (ref. (f))
Weights
Normal Gross Weight (Ref. (f))31,000 lbs.
Minimum Flying Weight (Ref. (f)) $\cdot 24,200 \mathrm{lbs}$.
Overload Gross Weight (Ref. (f)) . . . $35,500 \mathrm{lbs}$. (Max. Range)

Sign Conventions

The planes of the wing spar webs are perpendicular to a horizontal plane through the thrust line. Forces are resolved into components parallel and normal to the thrust line. Loads and accelerations referred to as being in the "beam" direction are normal to the thrust line while those in the "chord" direction are parallel to it.
Loads and accelerations are positive when up, aft, and out.
Positive beam bending moment causes compression in the upper surface of the wing.

Defendants' Exhibit FF-(Continued)
Positive chord bending moment causes compression in the rear spar.

Positive torsional moments tend to stall the airplane.

All dimensions of lengths and areas are in inches and square inches, respectively, unless otherwise noted.

Reference Axis
A reference axis is used for the calculation of torsional moments. This axis is the intersection line of a horizontal plane through the thrust line and a plane normal to the thrust line which passes through the leading edge of the root chord. (See pages 7 and 75.)

In the detailed analysis of any section of the wing, the torsional moments are transferred from this axis to the elastic axis of the wing section under consideration.

Aerodynamic Center (a.c.)
Aerodynamic loads are assumed to be concentrated at the aerodynamic center. Although the a.c. location along the span does not actually vary linearly, the slight discrepancy introduced by assuming it so is negligible. Therefor for convenience in calculating the torsional moments, a line of aerodynamic centers is assumed, which varies from $23 \% \mathrm{C}$ at Station 46 to $24 \% \mathrm{C}$ at theoretical tip. (Ref. page 75.)

The Glenn L. Martin Company baltimore. maryland
$-$

ANALYSIS OF
WING
DIAGRAM
(In True Chord Plane)

The Glenn L. Martin Company BALTIMORE, MARYLAND

Report No. $11,84-I$
Mode 1 B-26-D-1-C

ANALYSIS OF
Span. Distributior

PART No. 2

()an-wise Distributi on of "ing Coefficiants

The span-wise distribution of wing coefficients is obtajned for two nditions:- Ning with flaps noutral (page 9 to 28) and wing with faps floctod 45° (paş 29 to 43).

Since the wing has an effective tirist (drooped nose and nodified -ailing edge) outboard of station 155, the "ganeral method" of Yef. (o) is sed to obtain the span di 6 tribution oi lift and drag oefficients. Tho stribution of a twisted wing requires two steps, the basic and the additional lft distribution.

The wing tapers unifomly in thickness from tip to root. The chord apers from theorotical tip to station 155 . The chord inboard of 155 is slightly educed and is assumed to taper uniformly to \mathscr{E} airylane (see page 7).

The aerodynamic characteristics of the wing are determined from those f the airfoil sections between station 46 (NACA 0010.7-64) and the theoretical ip (NACA 0010-64 with dropped nose and modificed trai ling edge). The data btained fram these airfoils are correlated ivith the characteristics of a imilarly shaped wing tested in the wind tunnel.

ing with Flap Neutral

The basic $\frac{d C_{I}}{d \alpha}$ vs snan (page 10) is adjusted in order to obtain the or rected slope of .072 for the actual ^. ... of 7.65 (see rige 15).

For the "basic lift distribution" the absolute angles oi incidence re estimated (as shown on pege 9,) to determine the lift distribution which epends on the effective trist anci is the same for ali angles of atteck.

The to tal lift cijstributions colrsponciing to the critical design light conditions are deterrinod by aduine. the basic and the additionel aisributions as shown on Fgge 23 and Iigure 4 , 1age 24).

The variation of $C_{D_{0}}$ is adjusted (fig. $5 \mathrm{p} \cdot 26$) to rive the average $D_{0}=.0085$ (Aerodynamic estimate) over the entire wing.

The Cdo is assumed to have the same variation along the span as $d_{i}($ see page 25$)$.

The total wing irag distribution for the critical desi gn conditions s shown on page 27 and plot ted on figure 6 , page 28.

Admitted Novomber i24, 1950 .

Sejendanto' Exhibit ll SUMMARY OF CHANGES IN THE WING GEOMETRY OF

TH ES PB LL

Engineering Report No. 1339

Tho Glenn L. Martin Company
Baltimore, Maryland
August 16, 1940

Prepared by: 2 \&ad d ord
Chocked by:
approved by: Wesson Altman
chi of of horodyminios
Approved by $\frac{7}{2}$ chios Rosoaroh ir
G.L.M. sing. Rep. No. 1339

INTRODUCTION

Certain changes have been made in the wing geometry of the PBli-3 airplane as corpared to the wini; of the Pilll-1 airplane.

The changes listed below are discussed in the following pages indicating why the chances were made and the improvement to be achieved by each.

The chances are as follows:

1. The winf has woon swept back.
2. Tho thicleness of the wint has been inoreased.
3. The tip plan for has been modified.
4. The form of the lading edee forward of the spar has boe: changed outboard of the cuill.
5. The dihedral of the outer panel has boen reducod.
6. The span of the jull portion of the wine has booa increased.
7. The winc taper is straicht from the ship $\&$ to the winc tir.

The chaid;es are discussed individually in the following pages.

DISCTISSION OF THE CHANGES

1 - WING S\#EEP-BACK
The thooretical tip chord of the PBM-3 wins, has been swept back by on amount which provides a margin of 4% betwoen the maximum reurward 0.5. location in percent of the V.I.r. and the c.p. location for which the static longitudinal stability is neutral. This neutral point is at 34.6% and the most aft 0.0 . is at about 31.2%. Hance the presoribed sweepback gives satisfactory halence and longitudinal stability.

The win geometry for the P fr -3 is shown in Figure 1 and the geometry for the PPY-1 is slown in Fir,ure 2.

2 - YIMG THICKNESS DISTRIBUTION
The win: thickness tapers linearly from the Φ of the ship to the thooretical winr, tip. The section at the $\&$ is the 23020 and, at the tip, a modified 23010. The PBM-1 win; was 23020 at the $\&$ to modified 23006 at the tip.

The above chanre in thicknəss'was made to provide greater structural stiffness and to improve the stall charectoristics toward the wing tip through use of a thicker section which incroases the sootion C_{L} maximum.

A comparison of the thickness distribution for PBM- 3 and PBM-1
is shown in Firure 3.
The increase in wing thickness causes an estimated 0.5 mph top
speed decrease.
3 - TIP PLAN FORM
The tip plan form has boen modified from the previous Army tip
used on tre PBIS-1 for reasons of aupearance.
4 - OUTER IIN LEADING EIGE
The nose section contour forward of the spar has been ohanged to the form shown in Firure 4. This nose section at station 668 is

Paired linearly into the 23019.024 soction at the pull. (Station 173.5)

4 - OUTER WING LEADINS RDGE - Contd.
The purpose of this chande is to increase tho local C_{2} maximum toward the tip by increasing the camber of the airfoil and moving, the maximum oamber forward on the cord. This change also tends to dolay the anole of attack at whioh the tip section will stall. The nose radius of the outer wing section has been increased appreciably by this change as shown in Figure 5, where a 410 tip has been comparad with the PBM-1 and the PBM -3 nose radius variation with spane Tha oombined effect of the blunt nose and camber increase is to produce a flat-top lift curve by moving the transition point aft on the wing surface.

Figure 6 gives a comparison of the camber distribution along the span for the PBM-1 and PBM-3 and for the same wing with a 4410 tip.

The effect of the so-called drooped-nose (Figure 4) on the total airplane drag has been estimated from wind tunnel test on a medium bomber with the same type nose section. The drag polar for this model with and without the droof -nose is shown in figure 7. $\Delta C_{D P}=.0002$ at $C_{L}=.35$. Since the droop-nose covers about 75% of the span of the PBM-3 and about 38% of the span of the modium bomber, the drag increment for the PBM-3 is estimated at $\Delta C_{D P}=.0004$. The corresponding decrease in top speed is one mph. (1)

5 - MING DIHEDRAL
The dinedral of the top skin of the outer wing in the chord plane has been made 0° at the 30% chord stations. This was done in order to reduce the rate of change of rolling moment coefficient with angle of yaw, $\frac{d c}{d \psi}$, as much as possible and yst not give the wind a drooped appearance. Reducint, the value of $\frac{d c}{d \boldsymbol{\psi}}$, tends to reduce the possibility of the occurrence of a Dutch Roll condition. The oombination

5 - TINS DIHEDRAL - Contd.
of reduced dihedral and increased vertical tail area will materially aid this situation.

6 - GULL SPAN
The span of the inner wing (the gull) has been increased twelve inches on of the side of the airplane \notin in order to make room for the nacelle bomb bay, which holds $4-1000 \mathrm{lb}$. bombs, and still maintain the same sranwiso location of the nacelle \mathcal{L} as was the ouse for the PBM-1.

7 - TING PLAN-FORM TAPER
The PBM-3 plan form taper is maintained straight from the $\operatorname{ship} \notin$ to the tip. just as was done on PBM-1.

"Minteo By byoddcoal $7 \times 3 / 40$ SALTIMCh:

856

moser 857

PAOE No.

FIG. 4

nimparno $B y$ baddad
 8/1/40
 the glenn
 MARTIA CCMPAN
 BAL TIMCRE, MD

$162-B$

WHedrec by codígoc THE GLENA L. NARTIN CCMPAN $8+1+40 \quad$ BALTIMC.RE, MO

$$
\begin{gathered}
\text { DROORE NOSE EXTENQS OVER } \\
3 \in \% \text { SE THE SEAI-SPAN }
\end{gathered}
$$

ITATIOI:AL ADVISORY COMMITTEE FOR AERONATMICS

TECHNICAL NOTE NO. 713

A COMPARISON OF SEVERAL TAPERED TINGS

DESIGNED TO AVOID TIP STALLING

By Raymond F. Anderson

SUMMARY

Optimum proportions of tapered wings were investigatby a method that involved a comparison of wings dened to be aerodynamically equal. The conditions of odynamic equality were equality in stalin $\begin{gathered}\text { speed, in }\end{gathered}$ used drag at a low speed, and in the total drag at ising speed. After the wings mere adjusted to aerodyic equivalence, the weights of the wings were calcued as a convenient method of indicating the optimum 5. The aerodynamic characteristics were calculated ming theory and test data for the airfoil sections. ions combinations of washout, camber increase in the foil sections from the center to the tips, and sharp ding edges at tho center were used to bring about the Bred equivalence of maximum lift and center-stalling racteristics.

In the calculation of the weights of the wings, ${ }^{\text {a }}$ ole type of spar structure was assumed that permitted integration across the span to determine the web and
flange weights. The covering and the remaining weight e taken in proportion to the wing area. The total lights showed the wings with camber and washout to have the rest weights and indicated the minimum for wings with a er ratio between $I / 2$ and $1 / 3$.

INTRODUCTION

Many investigations have been made of the aerodynamic d the structural aspects of tapered wings with a view to ding the best taper ratio. Investigations of taper tho are reported in references 1 and 2. A general dission of tapered $\begin{gathered}\text { ing is given in reference 3. Although }\end{gathered}$

1 g and weigit were considered in references 1 and 2 , the fect of taper ratio on the maximum lift and the manner stalling of wings was not considered. The effect of eper ratio on the moximum lift is considerable. The tio sall that usually results from the use of tanered winjs, geover, evidences itsclf as instability in roll at ans of attack less than that correspondins to the maximum
lit cocificient. This condition is generally rccornime undesirable from the point of vier of handing charac ristics in low-spocd flight.

It is accordingly considered herein that wings should designed to avoid tip stalling. With this point of view. Wngs of different taper ratio were designed to be acrodyseed. The weights were then can total drag at cruising "ptimum" wing (the wing of lowest weight).

In the calculation of the maximum lift, the areas were s obtained that they approximate the values which rould be rquircd by wines with full-span flaps. The effect of prtial-span flaps was not considercd.

Wings with taper ratios of $1 / ?, 1 / 3$, and $1 / 4$ were consdered for a large airplane. In the determination of the ximum lift coofficicnts, a margin asainst the stalling the tips was specificd. For the threc taper ratios the s,alling of three scts of wings was considered: wings with rashout or camber increase in the airfoil soctions from cinter to tip (referred to as the "basic" series, to be deEld camblater); wings with washout; and wings vith washout padingedses, were assumed at the center of the wings to ncreasins the lift by the use of leadinf-edge slots to :ll of the soan except for a small portion of the center. 'he comparative effects of wasiout and camber should thereore be nearly independent of whether the lift is decreased t the center or increascd at the tips.

ASBUIIPIOI FOR TEE AERODYMAIC CALOULATIOIS

The rings had straight toners and rounded tips and r: re of a sizn suitable for a four-engine airplane of 6, 000 nounds fross meight with a ring loading of approxiretcly. 30 pounds nor square foot. The tip chord of the Ropezoid enciosing the rounded ti?s was used to dofine to topor ratio, as in rofercncc 4. The distribution of ticiencss aloney the span and of canbcr and washout, whon two rorc usce, was linear. A thickness ratio of 0.03 ras then for the airfoil sections at the tips. A basic wing, wed to deteraine the aerodynamic values to be equalod oy tin otior mincs, had a root thickness ratio of 0.14, an - of of 2,200 square feot, a taper ratio of $1 / 5$, and a dan of 158.2 fcot. The rethod of calculating the aimendons of the oticr wings :-ill be given later. The sembols bod arc listcd in an appondix.

Prevention of Tip Stalling

For the iirst series of wings of varying taper ratio, he rethod for nrevention of tip stalling was the use of arr: leadin: edses to reduce $q_{\text {max }}$ at the conter of the Whes. series of wincs was called the basic series
causc it inclucd the basic wing of taper ratio $1 / 3$ used 0 establish tre aerodynamic values. The NoA.C.A. 2.30 seion dirfoil scction listed in table I were used.

For a cocond scric: of tings, washout was usca; and, or tio third scrics, wanout was combiacd with an increase \because c-moor of the airfoil sections from center to tips. The ancase in cnaber produces an increase in tiae $c_{\text {max }}$ he sections nocr tro tips and thereby causes the stalling oint to wovc inmird. For tioc winss with rashout, small monnts of varhout merc usoa to nrevent cxcessive incroasc 7 tio inducoc dra; Sharn loadian odres at tice contor of In :"ings wore thoa uso to mene un tho balance of the merin requirca roinst stiliino of tho tins. Tho chsc of aner ratio $1 /=$ ras omittod for the ceries witi washout lone beciuse too tinin a ring rould have resalted.

For all the rincs, in orace to insure the avoidance tin stelliare, a certain c_{q} mar in was snocifice at - 7 j/ nton Cimax was reaced. (Sec fife l.) J!e mar-
N.A.C.A. Technical Note No. 713
rquired depended on the calculated spanwise position stalling point without sharp leading edges. This toccurred where a curve corresponding to the m se load distribution became tangent to the ${ }^{c} l_{\max }$ as outlined in detail in reference 4. Then this l. ms point was at or inside $0.7 \mathrm{~b} / 2$, the c_{q} margin $\mathrm{b} / 2$ was taken as 0.1. When it was outside $0.7 \mathrm{~b} / \mathrm{l}$, margin was increased in the ratio of the distance from center of the wing to $0.7 \mathrm{~b} / 2$. The provision of this ir; of margin lion stalling started at the center gave dilated positive damping in roll at the stall that di prevent surer dropping of a wins.

Conditions of Aerodynamic Equality

For the first of the conditions of aerodynamic equaldual stalin: speeds, plain airfoil sections mere oed when $C_{I_{m a x}}$ was computed because of the availabilthe $c_{\text {max }}$ data. The Reynolds Number at stalling was made to fall within the usual rance for an airof the size assumed by basing it on tho strolling with flays, so that the wings had approximately the areas as ringo with full-sinan flaps. That the condopf stalling-specd equality would not te appreciably jd by considering the wings to have full-suan flans verified from fissure 60 of reference 5, winch sites
${ }^{\circ} q_{\text {max }}$
Forage thickness of the rings mas small.)
Is the stalling spca V_{S} is equal to $\sqrt{\frac{2 \pi_{5}}{\rho S_{L_{\text {max }}}}}$ "E lias fixed, the stalling-sreced condition required the product $S C_{L_{\text {max }}}$ for each wing wo equal to the let for the basic $\because i r s(t a p o r ~ r o t i o ~ 1 / 3) . ~$

The second condition iras that the induced dross should (u2.1 at a speed corresponding to $a C_{I}$ of 2.0 for the ring (lor-speed condition). The induced dram ration the total drag was used because tire induced drag was y all of the aras and was relatively easy to colcuThe induced drag, with the effect of twist ε inid, may bo found from
N.A.O.A. Technical Note No. ?l?

$$
\begin{equation*}
D_{i}=\frac{\pi_{\xi}^{2}}{\underline{a} \pi b^{2} \cdot a}+\nabla_{j} \epsilon a_{0} \nabla+q \dot{S}\left(\epsilon a_{0}\right)^{2} \pi \tag{I}
\end{equation*}
$$

the spans required to malce the induced drags equal may expressed

$$
\begin{equation*}
\frac{b}{b_{b}}=\sqrt{u\left[D_{i_{b}}-\pi_{g} \in a_{0} v-q S\left(\epsilon a_{0}\right)^{2}\right.} \tag{2}
\end{equation*}
$$

cre the subscript b refers to the basic $\begin{gathered}\text { ing , and }\end{gathered}$

$$
\begin{equation*}
D_{i_{j}}=\frac{\pi_{s}^{2}}{q \pi b_{b}^{2} u_{b}} \tag{3}
\end{equation*}
$$

Zuation (․ $)$ is equation (1) with the last two terms omitd because the casic :̈inz has no trist. Fiese cquations ro derived fror the formula for $C_{D_{i}}$ giver in reference

Me thira condition, equal craisins sycods, was satis od je making tio droes oqual at cruisin; sncod, as tho r:": wos assumod constant. Luisine spocd corrosporded to ○ $0=0$ for tio basic :!in\%.

:ZTEOD OF CALOULATIOR

Pronortions and Aerocimanic Characteristics
 oher aorodynamic c:aracteristics of tho minss has bcen m to ;ive results tiat arree rell :ith test results ofcrences 4 and 3).

Tice method of coloulatinc tho maximum lift coczficiont
 r5, $c_{q}=c_{q}$, because tinere is no weshout and tiereforo $=0$. Stallin; was crlculeted to ocirur mithout any sher 1 ading edec at $0.7 \mathrm{~b} /$? ; then is, $c^{c} q_{\text {a }}$ would reach ${ }^{c} q_{\text {max }}$ zrot at the 0.7 point. See reforence 4 for a detailed
(rolanetion.) A value of c_{a} of 0.1 less than the ? $\imath_{\text {.n ex }}$ at. $y=0.7 \mathrm{~b} / 2\left(\mathrm{c}_{2}{ }^{\prime}\right)$ mas then the lift coeffi--Drat corvonyonding to $C_{L_{\text {max }}}$, Numerically, $C_{I_{\text {max }}}=$ $\imath_{,} / / c_{q_{n 1}}$, where $c_{q_{11}}$ was taken at $\bar{y}=0.7 \mathrm{~b} / 2$. The raliur: of coax ot the center of the wing were then conaiderod to be reduced $k y$ a sharp leading edge to the valirs of c_{2}, as shown, so that stalling would begin at the country oi the $\because: i n g$. The values of $c_{\text {max }}$ used for colriol:ting $C_{L_{m a x}}$ for this :"ins were taken from reference

Fin value of the induced arne s at tho low-spond condotron to. tin baric $\because i n g, D_{j}$, to be used in finding the suns $0:$ other wins was calculated from equation (3).

Fie ara the basic mine at cruising speed was cal-

$$
\begin{equation*}
\frac{\Sigma}{q}=\frac{\Sigma}{q}+\frac{I_{i}}{q} \tag{t}
\end{equation*}
$$

The valine 0 : $z_{0}{ }^{\prime} 1$ mas calculated for $a C_{I}$ of 0.3 and For the cuisine-smea Rozmolis Number (as outlined in mefrince : 3_{\because} a raznical integration alow s tho so an of the section aras ir om

$$
\frac{\partial 0}{4}=\int_{0}^{b!!} \int_{d_{0}} \text { c } d \underline{x}
$$

Ifc valines o: $c_{d o}$ were train from reference 7 for the basic wing as well as for timon others. The value of D_{i} / q mas calculated ryomequation ($\left(\begin{array}{l}\text {) for } \\ \text { a }\end{array}\right.$ value of q coreandine to the cruising speed.

With the values for the basic wins established, equal val: es For the otter fins were found y successive approximations. For tire other two :rings of tine basic series, a root tinckncss and an area were assumed that, it was hoped, $70: i d$ jrod:acn the cosircd characteristics. An approximate

조 …s then founc fron equation (i) so that c and c_{q} c．：Id be found．For these values，$C_{I_{m a x}}$ was then calcu－

ミo．．tior rinns rith wasjout and mith mashout and cam－ bo：iacことcase，airギoil sections and mashout vere sissumed．

 $c_{i,}$ to obtain c_{q} ，as sho：：n infisuro 2 ．

Erom tin val：os of $\dot{S}_{\text {thex }}$ for the winss，a rore accu－ rite vilue of S Vns rounc－or each wine to obtain a nrod－ irct of S and 0 Ginun to tioc value for the bnsic
以ect ratio so that the irnuced－dris factors u，v，and ∇ could be found from vefercnce 4．A more docurate veluc of the sunn to obtain the required induce？dray at lor anoed porld tion be fo：md Erow equitio：（r）．A volne of á or O．l nor derree was $\because s e \therefore$ Erom S and b，vore acocurate values of comid be found so that i／q comld je computed．

Mie value of D／A at cruisiaf snecd for each winf mas noxt found fron equatinr：（ \therefore ），wiere the value of jo／q ras cnaculated fromeruation（5）for a Ci corresponcirg to the
 tien fourd from errietion（I）EOr a value of q corresponde inf to tiec cuulsir．sheec．If tio values of D / q calcu－ latod ir timis manacr mere not closc to the value for tile basic wins，now values of root tisckncss ratio worc assumod

Siacessive anrrorimations mere repeated in tinis manner
 tained．T：\％o or three aruroximations vere usially required． The resultine dimensios and tio values of D／a are fiven in table I．Ticonounte of meshout rociilred acre a compro－
 der to investimeto tho cffect of ricatcr waniout，calcula－ tions rerc made for a rinc \＃ith cembor incroasc and mish－ out ：ith a taper rotio of $1 / 3$ ，ancirith $\varepsilon=-4^{0}$ ，buit tho results mero not included in tho tacle bociusce the Joifint mas excossively increascd．It should be noted that
N.A.C.A. Technical Note No. 713
tie washout is "aerodynamic"; that is, it is measured, not foll the chord, but from the zero-lift directions of the sot and the tip sections.

Weight of the rings

The load factors for calculating the weights of the rings wore computed as specified in reference 8 . A high oed of 240 miles per hour was used with a gust of 30 feet jer second, as given for condition I in reference 8. The Iftrcurve slope was computed from figure 2 of reference ${ }^{4}$. ho values of the limit-load factors n, computed in this incr, arolistod in table I.

The C_{N} to be used for calculating the load on tho inge was then found from

$$
\begin{equation*}
c_{N}=\frac{n\left(\mathbb{W}_{\mathbf{g}}-\mathbb{Z}\right)}{\mathrm{q}} \tag{6}
\end{equation*}
$$

here π_{r} is the gross weight; π, the assumed wing eight; and q corresponds to a speed of 240 miles per our. The load distribution per unit length along the pan, l, was then found from $q=q c_{q} c$ where c_{q} was bound as in reference 4 from

$$
\begin{equation*}
c_{q}=c_{N} c_{q_{1}}+c_{q_{b}} \tag{7}
\end{equation*}
$$

for the wings without twist, $c_{q_{b}}$ is zero.
The values of $c_{q_{2}}$ and $c_{q_{b}}$ were calculated from :he load-distribution data given in reference 4 so that the variation of the load distribution with taper was taken into account. From the distribution of load across the span, the distribution of the shear and the moment could be easily found.

The shears and the moments were assumed to be carried by a single spar with a simple type of structure as shown In figure 3, 80 that the weights of the material could be
ml by an integration across the span. The torsion load liminated by assuming the spar to be located at the tecntcr of each section may bo considered to be carby the skin.

The relieving loads caused by the engines and the fur\therefore; mere taken into account so that the total wines fits wore calculated in the form

$$
\begin{equation*}
\pi=\pi_{\pi}-\Delta \pi_{\pi}+\pi_{F}-\Delta \pi_{\vec{F}}+\pi_{C} \tag{8}
\end{equation*}
$$

The weights thus calculated may not are with the hts of actual airplane rings because of the simple " of structure assumed and the improbability that all material will develop the stress assumed. The effects te assumptions should, however, be similar on all the us so that the correct relative weights should be obable.

The load distributions across the semispan of the is, computed in the manner previously given, had the represented in figure 3 . From the load, or $c_{l} c$, es, the shears and the moments at any point y along semisuan wore found from

$$
\begin{align*}
& F_{S}=q \int_{\vdots}^{b / 2} c_{q} c d y \\
& \because=\int_{j}^{b / 2} F_{S} d y \tag{9}
\end{align*}
$$

shear bracing was assumed to have an anele of 45°, as in in 三izurs 3. For a unit length along th. roan dy esponcing to a unit lonetil of bracing dI, tho weight be mob will be

$$
\begin{equation*}
d \pi \pi=n \frac{f}{s} d L=0-\bar{E} \frac{S}{0.7075} \frac{d y}{0.707}=\frac{2 \eta \sum_{s}}{s} d y \tag{11}
\end{equation*}
$$

n is the snceific weight (assumed to be an alumifum alloy wishing 0.1 pound yer cubic inch).
s, allowable stress.
f. force in a diagonal.
a. factor of safety of 1.5 , the web weight for both Les of the wing is then

$$
\pi \pi=4 \times 1.5 \frac{p}{s} \int_{0}^{b / 2} F_{S} d y
$$

conservative stress of 20,000 pounds per square inch was med in calculating π_{W}.

In the calculation of the weight of the flanges, the -nt at any point along the swan was considered to be ied by tension and compression in the flanges. If F Francs of the beam ti is taken as 0.9 the wing thickthin the weight of a unit length of one flange will

$$
\begin{equation*}
d \pi_{F}=p \frac{F}{s} d y=p \frac{1 /}{t^{i} s} d y \tag{13}
\end{equation*}
$$

urifisht of upper and lower flanges for both halves of

$$
\pi_{s}=4 \times 1.5 \frac{\frac{p}{s}}{0} \int_{0}^{0 / 2} \frac{M}{t^{i}} d y
$$

rm equations (12) and (14), the web and the flange cots mere found by graphical integration of curves of and N / t^{\prime} along the scmispan. Values of s of 20,000 onds per square inch for compression and 30,000 pounds square inch for tension mere used to calculate the Inge weights.

In the calculation of the weight decrements due to the cicring loads, the concentrated loads shown in figure 3 ce considered, and the usoful loads were omitted to be con-- $\mathrm{\nabla ati} \mathrm{\nabla c}$. The shoar mas assumed to bc taken off at the
when rall so that half the weight of the body $\pi_{B} / 2$ sat a distance "̈. The weight of the body consists the complete weight of the fuselage ard the tail, loss zoril load. The neccllos and tho cosines mere include: the porer -plant weisiats, $W_{P_{1}}$ and $W_{P_{2}}$, and the Ring- $\mathcal{j} e a r$ weight was included in $\Pi_{P_{1}}$. The correct relip weights of the relieving loads mere established by a int analysis.

The relictilng effect of each load on the web weight proportional to tho load times its distance from the Dor. Then, from equation (ll), the web-wcight decrement coth halves of the ring. With a factor of safety of 1.5 a limit~load factor n, may be written

$$
\begin{equation*}
\Delta \pi_{\pi}=\frac{4 \times 1.5}{s} \cdot \underline{n}\left(\frac{\pi_{B}}{2} y_{B}+\pi_{P_{1}} y_{1}+\pi_{P_{2}} y_{2}\right) \tag{15}
\end{equation*}
$$

e same value of s was used as in the weomeight calcuton.

The relieving effect of each load on the flange weight roportional to the moment times the distance of the from the center. Then if $t_{s}{ }^{\prime}$ is 0.9 the root thick, the weight decrement due to the relieving loads for flanges and both halves of the wing will be, from equal-- (13).

$$
\begin{equation*}
\Delta \pi_{F}=\frac{4 x 1 \cdot \frac{5}{t_{s}}-\underline{n}}{s}\left(\frac{\pi_{3}}{2} y_{3}^{2}+\pi_{P_{1}} y_{1}^{2}+\pi_{P_{2}} y_{2}^{2}\right) \tag{16}
\end{equation*}
$$

e sene values of s Fere used as for the flange \rightarrow weight ululation.

The final weigit item Fin, mich included the coversend all of the structural weight other than that of e beam, was taken as a constant proportion of the wins - . The net weights of the various structural parts of coring and the total weights are listed in table I. As wing weight was found, it mas compared with the asmd roisht used in equation (6) and tho calculations repeated until the value of the reign assumed did not fit the final reisht.

RESULTS AVD DISOUSSIO：

From the aimension and the characteristice of the ：inse lisetcd in table I，the cfiect of chanceseci tho tarir and of the mothod to nrevert tin stallins maju be notrd．Ihn cítect oi a chnnco of the toper on $C_{\text {imax }}$ and on the rosultins aren may be exulnincd as follors．As the tiluer is increased．\quad q increasos irom the conter to the tiv of tike winc．In nadition，the Revinclis liumbor de－ cronscs townrd the tive so that，for the usual rirfoil erctione，$e_{\text {max }}$ dociensise The value of $C_{I_{\text {max }}}$
by rodieci and rtalling touds to stant nonrer tho tips．A rreatcr arount of the rinnes to provent stallinf of the tius minst thernfere be ase？to obtain the cosircd eq marsin， \therefore tiac torrr is increnocc．fins amount requirod mar bo monariod in tron or the difteronce，at the contor of the rins，betmen $c_{\text {max }}$ and the $c_{\text {m }}$ corrosnondines to $C_{I_{\text {max }}}$
 tancr，\therefore s listod in table I．Eocause of the foregoing ofo rocts，the areas also tonc to increase aith tho taper，as siovin in ineleI．
－ie ahang？i：：sonr rauired to obtain the desired in－ duced drar ioy the lom－s？eed condition denends only on the ralue of the incucos－iras factor u for wings without $t \cdots i s t$ ．As the rolinc of u，mhich is a moasurc of the chanco of inảaced arag mit：taper for wings without tivist， chansos $0: \because \because \sin$ si：tly rith the taper，the span rarics only Alathl \because ，as s：Aorr in table I．The rings with washout，

 the toblc。

Ehe incroasc in nran ：ith increase in taner orevious－ Iy mertioned requires z redaction in thickness to obtain the requifed lom value of tinc vroifile drag at the cruising condition．こho exact ralinc of vroile drag required also depends on the indieced $A \times n$ at cruisin sueed，as the to－ tal aras must ñve a シixod value．Mhis incuccil dras tends to be adversely affected by an increase in taver or in mashout．The combined efiect of washout and taner is nopre－ cinole for the wincs mith rashout and camber increase，as shown by the values of D_{i} / q in the table．The foresoinf effects cause the required thickness to docroasc with tho

When the thiciness was changed to make another approxion in the calculation of the characteristics of the s, $C_{I_{m a x}}$ was affected as well as the draf. π inether chane increased or decreased $C_{I_{m a x}}$ denended on the ikness ratio near $0 . ? \mathrm{~b} / 2$ and on the corresponding

The effect may be vredicted for any narticular
from fipure 55 of reference 6, which shoms tho variaof $c q_{\text {max }}$ with thickness ratio. A decreasc in root knoss ratio usually increascd $C_{I_{m a x}}$.

For the wings witil camber increase, the incroase in «icr tomard the tirs incre:seci $c q_{\max }$ and nroduccd gicr $C_{I_{m a x}} \nabla a l u e s$ and lowicr aroas. $A \approx$ some shinrpleadocdgo mas used for all the mincs to obtain the desired marcin, the $\nabla i n \bar{s}$ should be comparable in their avoid\% of tip stallins.

For the wings with washout and cambor increase, the red marcin could have becn obtained by more washout the induced dras would have been too freatly increasod. ill ainnunts of washout were used, as listed, and the camwas increased from 3 to 4 vercent of the chord as the jer ratio changed from $1 / 2$ to $1 / 3$. No further increase camber for the wing of taper ratio $1 / 4$ was used because rould have produced $n 0$ further increase in $c_{\text {max }}{ }^{\circ}$

With reference to the weichts of the winfs, it may be d thet the lowest weifhts were obtained for the mings a camber increase and washout. The lowest meisit is inated for a taper ratio betmeen $1 / 2$ and $1 / 3$, as may be N from firsure A. In order to determinc whether the lown meight had been aporoacied, the case of taper ratio with rashout and camoer increase was investigatod with ce as much washoint, or 4°. The increasciin washout rem red a reduction in thickness to obtain tinc desired drag cruising specd and an incrcase in soan to maintain the ired induced drag at lom socod. The rosult $\operatorname{mas}=c o n-$ orable increase in weirht.

If this analysis were arplied to wings of other size, ax and D_{0} would be affected by the change in Peynolds ber, but it is volieved that considerable ∇ ariation in e rould be possible vithout altering tho conclusion as the best taper ratio. The number of engines is s.lso of
fret innoutnnce because tho effect of their relieving
 on o! : \because dj front thickness ratio for the basic mine :ld \because ot nnuerciably alter the conclusions.

A: a: $:$ is in similar calculations and to shop the effct 0 : \because :n: inuit on $C_{D_{i}}$, tins change in $C_{I_{i}}$ due to mosht :u: ज口יn !rotted in firunes 5 to 7. The increase. in Mn: ir ronsidorsd to consist of two parts, mich may anat $\because \because$ di ri ane the last two terms of equation (l) by

 \therefore rritiri increment armendins on the sign of ∇ except

 $\because: n s+3!t$: \because llintical span loading is approached owing
 $\because \therefore \therefore \because \because \because \because$ ios, \because or cither \because wasinin or washout, may be cal-

 nc ar: :- intI. With reference to tho effect of the type
 on the rain nsoirst stalling of the bios, it may be said
then tin n-nount of :ras<compat>..nout required is substantially tho

Cor tho t: oc topes of twist distribution for taper os betroon $1 / 5$ and 1.0 .

From the orosnnt pincer and from tho data given in rondo 4 , similar calculations can be made for rings ny size and for any aerodynamic conditions. Analyses la probably be made for zings with partial-span flaps otinr hirn-lift devices.

COITCLUSIONS

For :incs within the range of thickness ratios comny used, designed to be aerodynamically equal, and with stalling avoided by the methods considered, the res of this analysis indicate that:

1. The optimum wings (the wings of the lowest might) obtained Then tip stalling is prevented by the use of Jifatc washout combined with ar increase in camber of airfoil sections from the center to the tip.

1/3. The optimum :rings have a taper ratio between $1 / 2$

Hey Memorial Acronautical Laboratory,
National Advisory Committee for Aeronautics, Langley Field, Va., May 3, 1939.
N.A.J.A. Technical Note ITo. 713

APPENDIX

Symbols

S, wins area.
b, sian.
b, span or basic wing.
A, aspect ratio, b^{2} / s.
c. chord at any section along the span.
ϵ, aerodynamic twist, in degrees, from root to tip, measured between the zero-lift directions of the center and the tin sections, negative for washout.
\because distance along the span measured rom the center.
\because, soc figure 3.
?o, section lǐt-curve slope, per degree.
c_{q}, section lift cocfricient: $\quad c_{q}=c_{q_{2}}+c_{q_{b}}$.
q_{b}, pert of Int coefficient due to acrodynamic
triste (computed for $C_{I}=0$) ; $c_{q_{b}}=\frac{\epsilon a}{c} \frac{o_{b}^{S}}{} L_{b}$.
part of liz t coefficient due to angle of attack at any $C_{I} ; \quad c_{q_{\Omega}}=C_{I} c_{q_{11}}$.
part of lift coefficient due to angle of attack for $c_{z}=1.0 ; \quad c q_{a 1}=\frac{S}{c b} L_{a}$.
a $:$, additional and basic load distribution parameters
(Values of I_{a} and L_{b} were taken from reference 4 to obtain the load distributions.)
$l_{a x}$, airfoil section maximum lift coefficient.
d_{0}, airfoil section vrofile-drag coefficient.
C_{N} ，wing normal－force coefficient（taken equal to C_{L} ）．
$C_{\text {L }}$ ，wing lift coefficient．
＇$L_{m a x}$ ，ring maximum lift coefficient．
${ }^{C_{0}}$ ，\quad ing profile－drag coefficient．
$C_{D_{i}}$ ，wing induccd－drag coefficient．
$\Delta \mathcal{D}_{i}$ ，increase in wing induced－dras coefficient due to aerodynamic twist．

D，total wing dray．
D_{0} ，Wing profile dram．
D_{i} ，wing induced drag．
$D_{i_{b}}$ ，induced drag of the basic ring．
ind π ，induced－drag factors（reference 4）．
n，limit－load factor．
l，load distribution per unit length along the sven．
π_{s} ，airplane gross might．
T，wing relight．
Subscripts π, \vec{F} ，and C refer to web，flange， and cover meishtis，respectively．
\triangle refers to a weight decrement due to relieving loads．
F_{S} ，sheer force at any point along the span．
M，bending moment at any point along the span．
D，specific visit（of aluminum alloy，O．l lb．／ cu．in．）．
s，2llorable stress．
t＇，effective thickness of berm at any point along s〕コに。 effective thickness of beam at center of wine．

REFERENCES

Orson, Ralph H.: Wings - A Coordinated System of Basic Design. S.A.E. Jour., vol. XXVI, no. 1, Jan. 1930, pp. 15-30.
Upon, R. E., and Thompson, M. J.: The Draw of Tapered Cantilever Airfoils. Jour. Aero. Sci., vol. l, no. 4, Oct. 1934, rn. 168-177.

Lachmann, G. V_{0} : Aerodynamic and Structural Features of Tancred Tings. R.A.S. Jour., vol. XII, no. 315 , March 19.7. np. 102-212.

Anderson, Raymond Fe: Determination of the Characteristics of Tapered \mathbb{W} ins. T.R. Jo. 572, U.A.S.A., 1236.

Jacobs, Eastman i., Pinkerton, Robert M., and Greenberg Harry: Tests of Related Formard-Camber Airfoils in the Variable-Density Wind Tunnel. T.R. No. Flo, i.A.C.A., 1037.

Anderson, Raymond F.: Tho Experimental and Calculated Sinaracteristics 0 ? 2? Tapered Wings. T:R. No. 527, MoA. C.A., 1938.
7. Jacobs, Eastman in., and Abbott, Ira E.: Airfoil SecLion Data Obtained in the N. $1 . C . A$. Variable-Density Eurnol as Affected by Support Interference and Other Corrections. T.R. No. 663, N.A.C.A., 1939.
3. Bur. Air Commerce, U. S. Dept. Commerce: Airplane Airwortiniross. Pt. O4 of Civil Air 只çulations, Kay 1958, 21. 12 [38] and 59 [85].

AC.A. Technical liote ioo. 713

Figure 3.- Spar structure and loads on wing.

C.A. Technical Note No. 713

DEFENDANTS' EXHIBIT VV

District Court of the United States, Southern
District of California, Central Division
Civil Action No. 10930-Y

MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs,

vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#2

It is hereby stipulated subject to proof of error that the appended "Exhibit 18 " is a reproduction of pages $267-275$, Vol. 3 No. 8 from a printed publication issued and published in the "Journal of the Aeronautical Sciences" about June, 1936, and that said copy may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as irrelevant or immaterial when offered in evidence, viz. :

> LYON \& LYON,
> /s/ FREDERICK W. LYON,
> Attorneys for Plaintiffs.
> /s/ FRED GERLACH,
> /s/ ROBERT B. WATTS,
> Attorneys for Defendants.

JOURNAL OF THE AERONAUTICAL SCIENCES

Technological Developments of the Curtiss-Wright "Coupe"

Presented by T. P. Wright at the Pacific Coast Meeting of the I. Ae. S., February 7, 19.36

albert e. lombard, Jr., Curtiss-Wright Airplane Company

※('MM.AK)

THIS paper presents the remulte wi researel which was carricel out in the develomenent of the Cartio. -right "Cinpe." a two place, all-metal cantilever momoplane. Winut tmund data of the etïete of oplit thap- irequirtecl. as is also that dealing with the drag of certain ieatures ui the airplane. Siructural texts oi a series ni stifiened sheet metal patach in colge compresion are reported which :lum granl correlation with the "effective width" conception of the action of thin sheet in the luckled state. Cimparionn is made of fifteen type wi stiffeners sutialle for une on reinfurced sheet structuresubjectel the comprewime. The results oif fight tests anel thenretical stulics comblined with wind tumel test- it airioils are diecusect. which indicate that the stalling characteristio- of tafered munopllane wings can 1 e appreciahly improwed without the use of aerollyamic twist, by using a highly cambered airioil at the ti, hating a high value ui Ci,

Wind tumel tests were conducted on a 112 scale muklel of the preliminary design in the Ruffale wind tunnel of Curtiss . Deroplane and Motor Complatl!. shown in Fig. 1. These tests included the effect in the lift and pitching monents of the installation oi $\boldsymbol{y}^{\text {phit }}$ flaps. 20% of the wing cherrd, 42 ; of the span. set at in degrees, (1izg. 2). It is seen that the flaps proflucet , rositive pitching mement (tail heavy) on the complete model, which is desirable since thereby the airplane can be glided at a reduced airspeed after the flaps have

Fit. 1. Moxlel in butfale, wind manel i, ir urti.. A.r.phia.

 mum lit ow-

ALBERTE. LOMBARD, JR.

FIG 2 Effects of flaps.

FIG 4. DRAG OF CABN \$ WINDSHELD.

TABLE 1 TESTS OF STFFENED $24 S T$ ALCLAD PANRLS

Strioltral. Dfstio

 clad stiffened by various tyes of formed allul ex trumed Ampes were carried att to chect the "e-ffective widte" metherl for computing the strength of stiffernel sheet metal pathels, and th select a stitable stiffener wif.
"The pand tests incliate that the "effective width" methorl, developed ly von Karman. Sechler and Dom-
 the stiffener :und ant effective wilth of alljacent sheet (0) att as a mit, all at the same stress, gives genel coorilination of the results. Referring to Table 1 . it is seell that the "cffective stresses" for stiffeners Type 7 and Type 11, which were tested on panels of various gauges with various mumbers of stiffeners, lie within narrow hands which are ow loroader than the individual variations on supposedly identical panels. One exception to this chose correlation oxcurred in the two tests of stiffener TYke 11 with .0.32 sheet and three stiffener: per panel in which the sheet failed prematurely due, apparently, to a peculiarrity of the rivet pattern on those panels, but this exception is mot lelieved to invalidate the rule cestalilisherl. The "effective width" method of anaiysis is considered very satisfactory:

Stiffenek Silatction

In selecting a suitahle stiffener type, certain restrictions were necessarily pated on the type of stiffener and its methox of attachment to the sheet. These restrictions were:
(1) The stiffener should be of a type that attaches to the wing skin with one row of $1 / 8$ inch dural modified brazier head rivets spaced 1 inch apart.
(2) The stiffener should be of a type suitable for use where the rilo spacing would be approximately 20 inches.
(3) The stiffener slowid have sufficient area and strength such that, when used with .032 inch thick 24ST Alclacl, the stiffener spacing at the rowt of the wings need x e not less than 4 inches. This third requirement was only partially adhered to.
The tests are summarized in Table 1. It was andeavored to test representative sections of all typ. some olviously designed for case of fabrication, winc for high structural efficiency. Inasmuch as any stiifener could be made somewhat larger or somewhat smaller if the area was not consistent with the learl

[^0]

 - hatratorivtic in it - А: , 1 commumit:

 liuler strength.

 Hat.
(t) The distance from the vertial lag oi the - sifferne to the line of rivets was small, than rabling the what

 lege wfiered support th this lege and tw the altiallat shect.

The extruled stiffencrs, Tylu, 11 :and 12, whinlo were next best in order wi merit. Were welleti.d fur actual use because of:

(2) The manner in which they faile.्र with will whlater collapse so that after failure they were sill alher for carry a large pereentage wi their maximum la:nd.
 shapes, and

 24.9T in thin , lecets.

overhang of the sheet on the end to fit the depth of the clamping blocks. In order to take care of small variations in the ends of the stiffeners, small brass shims (. 002 in. to .010 in. thick) were inserted until the" were tight before the load was applied.
The vertical guides of this frame were made of steel and held to the 12 inch spacing by steel bars across the lack. The thickness of the slot thru which the shect could slide was accurately maintained by clamping shims between the bars slightly thicker than the sleet to be tested.
This method of supporting the edges of the sheet was found to be very satisfactory when testing panels with stiffeners. On such panels the buckling was always more severe in the middle of the panels, and the failures always occurred in the middle of the panels -never along the edges-at the instant when the stiffeners failed. The frictional load carried in the guides, up to the point of failure of the stiffeners, could be only a relatively small percentage of the total load in the sheet edges. Previous to the time of failure the guides would drop freely of their own weight whenever the load was removed. It is estimated that the frictional load in the guides increased the observed maximum load by possibly 50 pounds, which is considered negligible.

The testing machine shown in the photograph. Fig. 6. developed after the fashion of the one described, (see Reference 2), incorporates a hydraulic jack with a maximum load capacity of 20.000 pounds.

Fili. o. Hydraulic test machine fur weet metal mancls.

 Sheet is Pone: Tests
Reference 2 shows that the load carrect hy a simply supported, unstiffened sheet metal pancl canl $1 x$ represented by the formula

$$
P=C^{\prime} \ell \sqrt{E \sigma}
$$

and the "effective width" can be written

$$
2 \pi=r^{\prime} t \sqrt{\bar{b} \cdot \sigma_{0}}
$$

in which
C is a function of r_{1} and i, as shonw in lixg. ".

$$
\begin{gathered}
\eta=(b ; R) \sqrt{E ; \sigma} \\
\lambda=(t ; b) \sqrt{E ; \sigma}
\end{gathered}
$$

E is Young's modulus of elasticity.
σ is stress at the supportet elge of a panel and alou. in the case of stiffener panels, the stress in the stiffener and adjacent sheet (of effective width $=$ 2w).
t is thickness of the shect.
b is width of sheet panels leetween supperts.
R is radius of curvature of sleet.
The curves of C given in Pig. 9 for the range of r, and i. encountered in the wings were deriverl fronn data

(f Reference 2. The nombgrams, Figs. 7, 8, 10 and 11, vere developed to simplity the computation of the paraneters and the values of 2π and P.
The assumed stress distribution in the-stiffeners and theet of the pancl test: is shown in Fig. 12, in which and in the edres of the as the shortening of the panel under load is the same at all points. Because of the support offered the sheet by the side guides, it was assumed also that all the width of the shect inside the guides would act effectively at the maximum stress. The justification of this assumed stress distribution is believed to lie in the close correlation of the tents of the stiffeners Types 7 and 11, Talle 1.

Wing Static Test

A complete wing for one side was static tested to the full design loads for high angle oi attack and inverted tlight. This wing, designed to close marginin accordance with the methorl as developed in the panel "- 's, carried the design loads without failure. Clipp bution fittings, designed according to this assumed distrifound satisfactory. These facts speaf finfere, were all applicability of the methorl of analysis to the design , all-metal aircraft.

Flight Tests

The most interesting part of the fight tert program was that devoted to the stalling characteristics in which modifications were effected in the wing contour which enabled the airplane to le stalled in a $410,6, t h$ and controllable manner.

FIG. 10. SOLUTION OF $2 w=c . t \sqrt{E / a}^{28}$

As originally flown, the airplane had a straight tapered wing with an N.A.C.A. 2315 airfoil at the root and N.A.C.A. 2309 airfoil at the tip with no twist. The N.A.C.A. 2309-2312-2315 series was selected because, on the average, it showed the smoothest shaped lift curve peaks of all the low cambered, low drag airfoils testell in the N.A.C.A. Variable Density Tunnel. ${ }^{4}$ The stall of this wing was observed in flight, by wool tufts, to start at the leading elge near the right wing tip and progress rapidly to cover the whole tip portion of that wing, whereupon it would drop uncontrollably. The conditions with the split flaps extended were essentially the same as with them retracted.

Plight tests were then carried out with fixed auxiliary airfoils. 14.5% chord, extending over the outer 50% of the span. Two types were investigaterl, one with a symmetrical N.A.C.I. 0012 section and the wher with a highly cambered N.A.C. $\Lambda .22$ section.:

It was found that, under certain combinations of angles, these fixed auxiliaries improverl the stalling characteristics by reducing the autorotational tendencies and improving the aileron comtrol. The elfects of these auxiliaries were quite insensitive to their angular setting; i.c., a large change in angular setting was necessary to bring alrout an appreciable change in the stall.

[^1]

The cambered anxiliaries appared to be better than the symmetrical in their effects on the stall. However. the installation of either type of auxiliary wats su detrimental to the take-off and climb characteristics, partictslarly with the anxiliaries at the angles neressary for the leest stall characteristics, that the use of the fixerl auxiliaries could met $1 \times$ comsidered satisfactury and was. thersfore abambinerl.
The other course which was followed to inprowe the stalling characteristics was to moxlify the airfoil sections. on the outer purtions: of the wing ly fairing out the maler side of the learling erlge in successive steps. increasing the leading erge radins, and increasing the airfoil camler. This prexerlure wats fomml definitely th improve the stalling characteristics. With the final comfiguration, the CW-19 airfoil (ligg. 13) at the tip tapered to the N.A.C.A. 2315 airfoil at the rexit, all autorotational tembencies |x-low the stall were eliminated and the airplance could be positively controlley in the stalled condition. The weol tufts shewerl that the stall of this wing started along the trailing erlge near the mirl point of the semi-span and proseceled gradually in all directions. The leading erlge at the tif remainerl minstalled throughout. It is interesting to note that when the nature of the stall was changerl sot that the sepuration starterl at the trailing ellge, instead of at the leadinge elge. the whole character of the stall lacalle smenth. more comerollable.

It appared that the change to the $\mathrm{CW}-19$ airfoil at the tip was erpual in effectiveness at the stall 1 , the

IG．12．STRESS DISTRIBUTION．

tation ui cither tyge of lixed anxiliary airfoil． x：was ino ohecrablse arlverse effect ont the stability frommance due tu this muxlification．

 is is whe acrulymanic wist reducing the incirlence ＂：the ：yat1 ow that the tip will stall at a higher I．wittack thath the rexit．The effects of this twist －x determined amalytically low the mext developerl lanert：（（hapter N．）The circulation alsolt any ut on the wing span is expresed by the lenurier
r 2！ばました

lis wing splatl
is wing choral att ally priatt
1 is velondey at inlinite alistance froml wing．
 cypation：
$y=11$ ？（
y is livather － 1 irn int conter line．
小心ハा：
$\mu=1$ g̈t． $\operatorname{t}_{n} \sin \| \theta \sin \theta$

 traight lime sariation oi liit culticient with ：as：＂：

FIG 13
 wing with comstant lwist along the ymu：

$$
2 . I_{n} \sin \| \theta|n \sin \theta+1 \mu|=(\text { (mn) })
$$

whers．

$$
\mu=\left(r_{i}^{\prime}+1,\left(1 / c_{L}, \quad l z . .\right)\right.
$$

 frome zerol liit
 angle of attack is lea at the tif thatl at ruat．）

 tion has lxell mate for at vaight tape．o．l wing as inllow：

$$
\text { Wr\% de. } \quad \text { int randull }
$$

I. .xnlit , .111:nio
I: .nnrī , .nnil:i -

$$
\text { 1. }: \pi 1, \ldots 1.1
$$

$$
r_{1, a,} \geq 1 . \therefore \rho 1 ; \pi=1
$$

 ，1it $1, \ldots \times$ ：

$$
11 \quad-1=1=1
$$

$$
1 . . \quad \div 1:=1
$$

$$
\begin{aligned}
& \text { Tijuchorel lismitheris Mil }
\end{aligned}
$$

FIG. 14. $\triangle C_{D_{i}}$ FOR TAPERED WING. ASPECT RATIO - GT24 dGL/dw. $8.84 / \mathrm{rod}$. TIP CHORO -. $4 G 1$ ROOT CHORD

FIG. I5. LIFT COEFFICIENT ALONS TAPERED WING.相

Curves are plotted in Fig. 14 giving the values of $\Delta C_{D 1}$ for various angles of twist. For a twist up to 2° the induced drag is not serious, amounting to not over 1% of the drag of an average airplane, but as the twist is increased above 2° the drag becomes appreciable.
The lift coefficient at any one of the four points $0=221 / 2^{\circ}, 45^{\circ}, 671 / 2^{\circ}$ and 90° is obtained from Eq. (1) to be:

$$
\begin{equation*}
C_{L}=2 \Gamma / c V=(4 b, c) \Sigma A_{n} \sin n \theta \tag{10}
\end{equation*}
$$

In Fig. 15 are plotted the lift coefficients along the span of this wing with zero twist and a wing with a hypothetical 6° of twist, both at $C_{\text {Le }}=1.50$. In this figure is plotted also a curve for the maximum lift coefficient along the span which was developed taking into

FIG.17. LOAD GRADING CURVES
TAPERED WINGS AR = dC./da. 50
account the variation in the maximum lift with atirinl thickness ratio and with Revolds. Nomler, which varioalong the span clue to the taper.

It is seen that the wing with 0 twist evorots the maximum lift cocelicicont for the $2.31523(4)$ s.rics ond a considerable pertion of the onter wing. ani it in licere fore reasonalile that there should $\mathrm{lx}^{\text {e }}$: fromomital tendency to stall at the tip lirst. bringing alxmt monn. trollable autorotation. The curse with 6 wiv repre. sents a wing that should $1 x^{\text {e sitisfactury in the - tall if }}$ the N.A.C.A. 2315 to 2.30^{\prime}) wing ware retainat. H1, ever, referring again to loig. It it in werl that wrlt a wing would have an appreciably highor drage than the
 to try to obtain goxel stalling characteribio, inerell in twisting the wing is decidedly inefficiont. It is bunch better to use only $1^{5}-2^{3}$ of acroslynamic (wint in conns. bination with a tip airfoil having a high value of (i) ast and having a lift curve with a romul sumwill lill.
It is of interest to note that the lxoldits gitios lis substituting the CW-19 airfoil fur the N..1(: $1.3 \times N)$
tip were due entirely to the extension ,ii e to a high value of $C_{\text {Lmas }}$ at a high angle There was only 0.2 shift of the zero lift the N.A.C.A. 2309 airfoil to the CW- 19 ed to a common chord as determined Buffalo wind tumel of the Curtiss AeroIotor Company. However, these tests on rfoils at $80 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. slowed that the CW-19 pped a high uncorrected $C_{L \text { max. }}=1.36$ with unded lift curve prak, comparable to C_{1} mar.
 Clark 1 :
 irom Keference 6 to swow the load gradme curve and lift coefficiont gratling curver in :1 orn in airfoils with varimstis taper ration fire :In :1-pett ratho
 to recognize that while struetural elficicome is gatuend with the high tayer ration, the problems oif , whatinime

DEFENDANTS' EXHIBIT WW

District Court of the United States, Southern
District of California, Central Division
Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs,

vs.

CONSOLIDATED VULTEE AIRCRAF'T CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#3

It is hereby stipulated subject to proof of error that the appended are reproductions of the following printed publications and that the said copies may be used in evidence with the same force and effect as originals, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence, viz:
"Exhibit 19 " is a reproduction from a printed publication, Vol. XLI, pages 175-180, entitled "Aerodynamic and Structural Features of Tapered Wings" issued and published during the year 1937; by the "Royal Aeronautical Society" of London, England.
"Exhibit 20 " is a copy of a reproduction of a
publication entitled "Correspondence," Vol. XLII, pages 754-755, issued and published during the year 1938 by the "Royal Aeronautical Society." of London, England.
"Exhibit 21 " is a reproduction of pages 660,661 , 671, 672, 690, and 697, Vol. XXII, of an article entitled "Development of Sailplanes" issued and published during the year 1938 by the "Royal Aeronautical Society" of London, England.

LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS, /s/ FRED GERLACH,

Attorneys for Defendants.

The better response to ailerons and its resulting effect of manouvrability - hich is afforded by wings of higher taper ratio can therefore only be utilised \rightarrow re is taken to maintain a sufficient degree of lateral control at and beyond .all.

This Staluing of Tapered Wings.
This subject has recently received a good deal of attention in this country and Imerica in view of the unpleasant characteristic of tapered wings, especially ase of high taper ratios, of dropping a wing when stalled in a more vicious way an rectangular wings. It has also been observed in llight and on models in the it at the tips and not at the centre. The stalling characteristics of wing tall * taper ratios are still very much disputed, and some designers of airs of oing wings of relatively small taper ratio claim stalling characteristics comarable to those of rectangular wings.
When first faced with the phenomenon one is inclined to explain the behaviour \therefore the stall of tapered wings solely on the basis of the acrofoil theor:. The rofoil theory indicates, as illustrated in Fig. 7, that an clliptical wing or a win.r

taper ratio of about 2:1 which appronches the elliptical distribution should ail simultaneously over the whole span. Wings of higher tiper ratio should al frst at a point somewhat inboard of the wing tips as there the local (' , or - effective angle of incidence reaches a maximum value prior to other portions the wing. However, it has been found that the acrofoil theory alone does give a satisfactory explanation and that a number of other parameters have talling changed decisively as a wing of a given taper ratio the characteristics Vore recent tests by Irving at the N.P.1.. and observations in flight by :ay (15) have indicated the existence of a spaniwise fow which depends on the \therefore retion of sweepback. On a tapered wing with no sweepback of the leading tre near a sweep frailing edge which was directed fre, Irving observed a transterse a the aerofoil. A similar type of fow was obsem the tips towards the centre :\% negative angle of yaw. life-reran an outward How (towards the tips) is ubserved on a tapered wing having a swept back leading and correspondingly r full-scale on a monoplane with positive angle of yaw. Corresponding to the eqection of this secondary flow the stalling of the tips was cither delayed when

 verse flow. The spanwise componem of the Hen will alfer the bomedans espectially when the aterofoil is stalled. In the rate of a latwed atominit. the case of an aerofoil with swep lemand tather elece deald air will he ported form the tips towards the remte thas delat ing the talling of :he tip. accelerating the stalling of the sipe and acocterating the walling of the con: comparison with the correponding anowoil with staish tratilne race.
 early to dorm a definite opinion, hat it is most likele that the phemomenon spanwise dead air transport will explain certain ohereathons in resard: point where the breakallaty of the kon first exolles on the wing whith contradiction to the ordinary acrofoil theory.

Apart from this phemomenom it ustally orerooked whon aploms the acrofoil theory that the wing section along the span is met comatan on it monoplane wings as the hickness chord ratio batis usmally fom the . towards the tip, apart from the change in chord.

In predicting the point where stalling will first wour, it is nocosatry tor allowance for the actual stalling angle of a section at :any point of the spar. by varying the geometric angle and the chatacteristios of the sertion (hai chord ratio and camber) it shoukl be possible to comtol 16 some wath commencement of burbling in relation to the wing plan form.

(a) Influence of Tuist.

A mere twist, i.e., an outwash wowards the tips seems to be a ler | |
| :---: | scheme to delay the stalling of the lips, but it is, in my upinion, a wer! indi way unless the twist becomes so excessisely large that the drage and the distribution at small angles of incidence are sulstantially alfected. J. Hurlot published some theoretical investigations in 1033 on twisted tapered "1 The distribution of twist along the span was so chosen as to obtain an ellif C_{L} distribution. The following table contains the angle of twist and the in. of induced drag compared with the minimum value for clliptical lift distri! at an overall $C_{\mathrm{L}}=\mathrm{I}$.

Angle of twist equals difference of geometric angle at root			
Taper Ratio.	and tip for overall $\mathrm{C}_{\mathrm{L}}=1$.	Di/Di cllip.	
5	20	1.21	
2.5	10	1.11	
1.25	15	1.01	
1	13.5	1.0	

On a wing which was actually used on a glider consisting of a rectia:centre portion and tapered tips (taper ratio $=1.54$) the twist required fitapered portion was -9.5°.

Hueber's assumption of an elliptical C_{L} distribution, allhough rationa: quite arbitrary and may appear too severe. In a more recent publication is. influence of twist by Albert E. Lombard (18) in the Jourmal of the Aeromi Sciences ("Technical Developments of the Curtiss Wright Coupe ") the a comes to the conclusion that even a mild twist not exceeding - 6° is a inefficient way of obtaining good stalling characteristics. The wing iniestici by Lombard had an aspect ratio of 6.724 and a taper ratio of 2.16 . The ir. - .
induced drag for various angles of twist and the rexulting serstriblytion fre 3018 in Fig. 11.
For a twist up to $2^{=}$the increase in induced drag is not serious, amounting not over 1 per cent. of the drag for an average aeroplane, but M the twist is crased above 2° the additional drag becomes appreciable.

LIFT COEFFICIENT ALONG TAPERED WNE

Fig. 11.
(b) Tuist Combined with Change of Camber.

More eflicient than a mere twist is the combination of lwist and, hav, camber as follows from lige 12, where lift curves are plotiod low a small and a section of higher camber. Provided that the difterence in .. smaller than the difference in zero lift angle, it is obvious that lhe wall iti), range for the more highly cambered section is greater than for dre nection low camber. This increase of total effective angular ranse van be miliwe delay stalling of the tips. If we consider first a section of a relaticrely low war near the root of the acrofoil, and if we base our consideration inn : theoretical C_{L} distribution depending on the taper ratio of the wins. a 1 . local value of C_{L}^{\prime} is required. The nargin against stalling of this riction

$$
\gamma=\left(a_{\max }\right) \text { absolute }-a_{1}=C_{\mathrm{L} \text { max }}^{\prime} /\left(d C_{\mathrm{L}} / d \mathrm{a}\right)-\left(\prime_{1} / / d\left(_{1 . .} / l_{\mathrm{a}}\right)\right.
$$

Fig. 12.
$d C_{\mathrm{L}} / d a=2 \pi$ (theoretical value), but this value is athally slighty inmumen thickness chord ratio and camber; $\left(a_{\max }\right)$ absolute $=a_{n}+\dot{a}_{\max }$ whirre $a_{n} \quad$ z.T" angle and $a_{\text {max }}$ is the angle at which $C_{\text {max }}$ is measured from $a=0$.

Let us now consider a section further outboard at which the local lift roetti. it required may be $C_{\mathbf{L}}{ }^{\prime}$. The local margin against stalling at this portion on: wing is therefore:-

$$
\gamma^{\prime}=\left(a_{\text {mas }}^{\prime}\right) / \text { absolute }-\left({ }_{\mathrm{L}}{ }^{\prime} /\left(d{ }^{\prime} '_{\mathrm{L}}, \text { d du }\right) .\right.
$$

It is obvious that if $\boldsymbol{\gamma}^{\prime}>\boldsymbol{\gamma}$, the wing will stall first all the inner sertion.. the difference between $\boldsymbol{\gamma}^{\prime}$ and γ will then represent the margin against stal.". of the outboard section compared with the inboard one. It call catsily be werit that the required geometric angle and therefore the necessary amomint of il to produce the value of C_{L}^{\prime} is equal to the difference of the re⿻pectiverern angles of the two wing sections.

An investigation on these lines has been made for wings of tarious ab: ratios, and the assumptions in regard to distribution of thickiness domed
 ontains the amoment of twint reguired in onder to proslane the theorctital

 will then be wo increase of inducer drag compared with an mentinded wing
 ner across the span for "ings of sarmus taper ration and for wins wition

 ons with the camber at o. t and 0.5 of the chord gine satisfartom results sections with the ramber at o. ir are hess suitable.

ASSUMED DISTRIBUTION OF THICKNESS 8

CAMBER ACROSS SEMI-SPAN.

Fili. 1211.

Tapered IVings and Wing Tip Slots.
The method described above is based upon the increase of angular range mainly. \because to the lower zero lift angle of higher cambered sections compared with those - ow camber. The obvious disadiantase, of course, is the difficulty to fair sections of varying camber and also the concentration of high torque at the x where the resistance of the wing against torsional deflection is weakest. wher methor consists in utilising such sections where the angular range is ereased at the high lift end of the angular range, for example, by using a reed section at the tips.
gorling away the boundary layer is also a means to increase the high lift end

- 4. angular range, and one coukd conceive a method to prevent tip stallingr this basis. Such a method would, however, suffer from the obvious practical edrantage that the effect is bound up with the working of the power plant wh drives the pump.

5. Taperbd Wings and Loncimtomid. Sthbiots.
(a) Analysis of Pitchiny Momonts.

Most designers who began to desis" monoplances "ibh lapered w. applied the knowledge and experience samed fom biplathe desizn faced with the difficulty to obtain salisfactory longitudinal mabilit:

found it necessar! vither to hith the (e.li, much more forwatel of the assumed position or 10 incwate the tail whame comsiderath bewol which gate satisfactory stahility on hiplance. Ihere ate batome w... account for this msterious instability of the momoplane, and in t! I propose to deal with some of the major ramses, bul 1 :min mat tan:-

 taper ration of aloout $4: 1$ and at tail whme ol 0.55 .


```
Admitted November 24, 1950.
```


DEFENDANTS' EXHIBI'T XX

District Court of the United States, Southern District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a Califormia Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAF'I CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#4

It is hereby stipulated subject to proof of error that the appended "Exhibit 22 " is a reproduction of pages 604 to 613 of a printed publication "Luftfahrforshung" containing an article entitled "Elliptische Autriebsverteiling durch Verwindung und Profilanderung" published and issued by Z.W.B. in Berlin, Germany, in the year 1937 and that "Exhibit $22 a$ " is a translation of said article (subject to correction if any error is contained therein), and that said "Exhibit 22a" may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as
irrelevant or immaterial when offered in evidence, viz:

LYON \& LYON,
/s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS, /s/ FRED GERLACH, Attorneys for Defendants.

ELIIPT TCAI LIFI EIS'RTBUTION FY TWIS工 ANI) (HHNGI IN IROFIL
by chin Cheng Zien, Shanmatil
Thesis, Tecrinlcal University, Eerlin.)
atmict
fin examination jis made of the methods bi which elliptical lift
tritution cen re attained suanklae by twlat find proflle variation.
 iter inan in the center of the wing.

rife numitere fiven n wristives reter to "meferences", soction ix.)
Laterui staililti -s guamanteed even at stiall, bi the deiayeci
 $r=d$ d.

 An: laced in the center of the wing.

Contents

Fincamentala nf airfoil gatenry
Fuch': solut on
\therefore arndiation of the N n Contur

1. Ans] そt ticrl SOL..tin n
\because Grusnical Solution

2. Discustin of the kosilate from 7 wist

․ Cáa, Anw se DLstrilution and the Influenue oi C_{a} Frofti= Sicterttices

Graphical Methods for the Determination of the Distribution of the Angle of Attack
Analytical. Test of the Lift Distribution and the Increase in Induced Drag
mparison of a Non-Twisted Elliptical Airfoil and the Trapezoidal
ing with Twist and Change in Profile.
Induced Drag
Flow Separation, Lateral Stability and Lift Loss
Comparison with experimental results Formerly Obtained
wist for Any Lift Distribution
unary
eferences
ppendix

I. Fundamentals of Airfoil Theory

ho Lift of a portion of a wing of infinite span, having the $d x$, is given by Kutta-Joukowski's Circulation Theorem

$$
\begin{equation*}
d A=p v_{\infty} \Gamma(x) d x \tag{1}
\end{equation*}
$$

$\boldsymbol{P}=$ the a lr density
$V_{\infty}=$ the stream velocity at infinity.
$\Gamma(x)=$ thai circulation at the point x.
practically:, tho inf, is calculated by the formula:

$$
\begin{equation*}
d A=C_{\alpha}(x) \frac{p}{2} v_{\infty}^{2} t(x) d x \tag{c}
\end{equation*}
$$

$C_{a}=$ the value of the lift (determined
$t(x)=$ the wing chord at the point x.

A comparison of equations (1) and (ε) gives: :

$$
\Gamma(x)=\frac{1}{2} C_{a}(x) t(x) V_{\infty}
$$

The circulation Γ is proportional to the product of $C a$ and t. C_{a} proportional to the angle of attack, $\boldsymbol{\alpha}$, relative to the axis of

$$
c_{a}=\frac{d c_{a}}{d \alpha} \cdot \propto
$$

rculation distribution for a wing of infinite span is directly tional to the angle of attack and the wing chord.

- lift distribution for airfoils of finite span is calculated bit di's Method [2]. The circulation is her no longer proportional geometrical but to the effective angle of attack, \propto. The fence between the geometrical angle of attack, \propto_{g} and the offective, s the induced angle of attack, \propto j

$$
\propto_{i}=\frac{v_{1}(x)}{v_{\infty}}=\frac{1}{4 \pi v_{\infty}} \int_{-\frac{b}{2}}^{+\frac{b}{2}} \frac{d \Gamma}{d \xi} \cdot \frac{d \xi}{x-\xi}
$$

x is the point at which the induced angle of attack is calculated
is the abscissa, variable over the span. The effective angle of
thus is then:

$$
\alpha_{e}=\alpha_{g}-\alpha_{i}
$$

abstitution of $\mathcal{L e}_{e}$ in equations (3) and (4) gives:

$$
\begin{equation*}
\Gamma(x)=\frac{1}{2} c_{a_{\infty}}^{1}\left(\alpha_{g}-\alpha_{i}\right) t(x) \cdot r_{\infty} \tag{i}
\end{equation*}
$$

ith reference to equation (j)
$)^{\prime}=\frac{1}{2} t(x) v_{\infty} c_{a \infty}^{\prime}\left[\alpha_{q}(x)-\frac{1}{4 \pi \cdot v_{\infty}} \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{d \Gamma}{d \xi} \cdot \frac{d \xi}{x-\xi}\right]$
See, Fuchs-Hopf-Seewald: Aerodynamics ${ }^{2}$ Vol. II, Chapter. V, pp. 130-1, (0) irculation is determined spanwise by this integral equation when ing contour and the distribution of the angle of attack are given.
II. Fuchs' Solution [1]
quation (7) was solved by Betz [4] by means of a power series, by rt [6] and Lotz [5] by means of a Fourier series, by fuchs [1] kr. of a trigonometrical polynomials and graphically by Lipitsch [7]. n Fuchs' method the airfoil contour is approximated as well as Ole by the fewest possible members of a trigonometric polynomial practical wine model, the approximate contour possesses the rely h leading and trailing edges, as wall as rounded wing tins. This Ivantageous compared to the zigzag sinusoidal wing, edges for the
ximation of the contour by other methods.
cation (7) is simplified by the introduction of now variates:

$$
x=-\frac{b}{2} \cdot \cos \varphi, \xi=-\frac{b}{2} \cos \psi
$$

φ and ψ vary from 0 to π, when x and E vary from $\left(-\frac{b}{2}\right)$ ic
); furthermore

$$
\begin{align*}
\Gamma(x) & =2 b v_{\infty} G(x) \\
t & \frac{4 b}{c_{a}^{\prime} \infty} \mu(x) \\
G(\varphi) & \mu(\varphi)\left[\alpha_{g}(\varphi)-\frac{1}{\pi} \int_{0}^{\pi} \frac{d G}{d \psi} \frac{d \psi}{\cos \psi-\cos \varphi}\right] \tag{8}
\end{align*}
$$

ontour function $\mu(\varphi)$ is an odd sine function with odd members, if irfoll is symmetrical trout the center, $\varphi=\frac{\pi}{2}$., and decreases de the wing tips.

$$
\mu(\varphi)=\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi+\ldots
$$

orly for the circulation

$$
G(\varphi)=G_{1} \sin \varphi+G_{3} \sin 3 \varphi+G_{5} \sin 5 \varphi+\ldots
$$

relation transforms (8) into:

$$
\begin{equation*}
P \sum_{n=1}^{\infty} G_{2 n-1} \sin (2 n-1) \varphi=\alpha_{q} \mu \sin \varphi-\mu \sum_{n=1}^{\infty}(2 n-1) G_{2 n-1} \sin (2 n-1) \varphi \tag{9}
\end{equation*}
$$

he geometrical angle of attack, αg, is represented in the al case by:

$$
\begin{equation*}
\alpha_{q}(\varphi)=\alpha_{0}+\alpha_{2} \cos 2 \varphi+\alpha_{4} \cos 4 \varphi+\ldots \tag{10}
\end{equation*}
$$

is symmetrical about the wing center and decreases towards the wing
ho evaluation of the coefficients $G_{1}, G_{3} \ldots$ according to equation (9)

$$
\left.\begin{array}{rl}
G_{1}=S_{1}-\sum_{\lambda-1}^{\infty}(2 \lambda-1) \mu_{2} \lambda-1 G_{2 \lambda-1} \\
G_{2 k} & +1-G_{2 k-1}=S_{2 k+1}-S_{2 k+1} \\
-\sum_{\lambda=1}^{\infty}(2 \lambda-1)\left(\mu_{2 \lambda+2 k-1} \pm \mu_{2 \lambda}-2 k-1\right) G_{2 \lambda}-1
\end{array}\right\}
$$

the minus sign is valid as long as $\lambda \leqq k$ and plus if $\lambda>k$, so ono takes: $\mu_{-1}=-\mu_{1}, \mu_{-3}=-\mu_{3}$.
aIs way ̆:

$$
S_{2 i+1}=\alpha_{0} \mu_{2 i+1}+\frac{\alpha_{2}}{2}\left(\mu_{2 i+3}+\mu_{2 i-1}\right)+\frac{\alpha_{4}}{2}\left(\mu_{2 i+5}+\mu_{2 i-3}\right)+
$$

$$
=2
$$

$\left.\mu_{1}\right) G_{1}+\quad \quad 3 \mu_{3} G_{3}+$

$$
\begin{aligned}
& S_{1}=\alpha_{0} \mu_{1}+\frac{\alpha_{2}}{2}\left(\mu_{3}-\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(\mu_{5}-\mu_{3}\right) \\
& S_{2}=\alpha_{0} \mu_{3}+\frac{\alpha_{2}}{2}\left(\mu_{5}+\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(-\mu_{1}\right) \\
& S_{5}=\alpha_{0} \mu_{5}+\frac{\alpha_{2}}{2} \mu_{3}+\frac{\alpha_{4}}{2} \mu_{1}
\end{aligned}
$$

ho. approximation of the contour gives us $\mu_{1}, \mu_{3}, \ldots \mu_{k+1}$, the ximation of the twist $\alpha_{0}, \alpha_{2} \ldots \alpha_{2 \lambda}$; we have therewith $(k+1)$ Hons for the calculation of the $(k+1)$ unknown of the lift function 3... $G_{2 k+1}$ I he series $\mu(\varphi), G(\varphi), x_{q}(\varphi)$ are rapldiy convergent $[1]$. no calculation of the lift, it 1 s ; in general sufficient to ximate three terms each for $\mu(\varphi)_{\text {and }} \alpha_{9}(\varphi)_{\text {in order to solve for }}$ ire unknowns G_{1}, G_{3}, G_{5} from the three. linear equations. onvorsoly, for a given lift distribution ${ }^{i} G(\varphi)$ and a given wing fur $\mu(\varphi)$ the twist $\alpha_{q}(\varphi)$ can easily be calculated. Fuchs treats. roblem: How must the airfoil be twisted for an elliptical lift Ibution?

In this work Fuchs' proposal is further developed and, indeed that low separates at the tips later than in the center ls considered. or the solution of the proposed problem, a series of assumed zoidal airfoils is investigated, in which the wing contour is ximated by several members of a trigonometric polynomial and the calculated thereby compared with the desired condition. In this work is given a method according to which all such ximations can easily bo performed graphically.

The contour function:

$$
\begin{aligned}
& \mu(\varphi)=\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi \\
& t(\varphi)=t_{1} \sin \varphi+t_{3} \sin 3 \varphi+t_{5} \sin 5 \varphi
\end{aligned}
$$

hereby wanted so that $t(\varphi)$ accurately defines the airfoil surface d represents as far as possible an experimental wing contour.

The first coefficient $\mu_{\text {, }}$ or t_{i} is given analytically by the condition the equality of the surfaces:

$$
\begin{aligned}
& F=\int_{-\frac{b}{2}}^{\frac{+b}{2}} t^{(x)} d x=\frac{b}{2} \int_{0}^{\pi} t(\varphi) \sin \varphi d \varphi \doteq \frac{b}{4} \cdot \pi \cdot t_{1} \\
& t_{1}=\frac{4 F b}{\pi b} \\
& \mu_{1}=\frac{c^{\prime} a \infty}{4 b} \cdot t_{1}=\frac{c_{a}^{1}}{\pi A}
\end{aligned}
$$

The members of higher order are without influence on the surface ea: they are a function only of the chord distribution. They are epically determined.

The half span is obtained from the abscissa, the wine chord from he ordinate (see Appendix, Fig. 1).
ie semi-span is subdivided in the cosine of the angle varying by 2Lta of 10°. The cosine division is obtained quickly and accurately a quarter-circle with radius $r=\frac{b}{2}$ is drawn below the figure, the sartor circle is divided into nine equal farts and from the paris pained in this way, perpendiculars are dropped onto the base. It s recommended that the scale of the diagram be chosen so that $\frac{b}{2}$ approximately 20 to 30 cm .
The cosine division of the abscissa is looted twice on transparent amor. The ellipse

$$
y_{1}=t_{1} \sin \varphi
$$

s drain over one of the cosine divisions. The function

$$
y_{3}=t_{3} \sin 3 \varphi
$$

s superimposed in this ellipse for various $t_{3}^{\prime} s$. It is sufficient n most cases to put:

$$
\frac{2 t_{3}}{6}= \pm 0.05, \pm 0.10, \pm 0.15, \pm 0.20, \pm 0.25
$$

e Appendix, Fig. 2)
The transparent paper is then laid on the figure on which the actual rd is plotted and one judges which curve y or which t_{3} best responds to the actual airfoil contour. The first approximation of is determined sufficiently accurate by interpolation of the ividual curves:

$$
\mu_{3}=\frac{c_{a \infty}^{\prime}}{4 b} \cdot t_{3}
$$

y curve.

$$
y=t_{1} \sin \varphi+t_{3} \sin 3 \varphi
$$

plotted on the other cosine division where t_{3} corresponds to the flue just found by interpolation. The function

$$
y_{5}=t_{5} \sin 5 \varphi
$$

potted over this curve for different $t_{5}^{\prime} s$. It is sufficient to ot:

$$
\frac{2 t_{5}}{b}= \pm 0.025, \pm 0.050, \pm 0.075, \pm 0.100
$$

we Appendix, FLE, 3)

Figs. 1: on the Iraturionel let Lo
Iris transparent paper is now laid over the figure on which the :dual wing, chord is plotted and one judges which curve y ur t_{3}
prresponds best with the actual outline:

$$
\mu_{5}=\frac{c^{\prime} a_{\infty}}{4 b} \cdot t_{5}
$$

The values of y_{1}, y_{3}, y_{5} are obtained ulu+ckly and aciuraitel: in raw ing circles about a point with radii t_{1}, t_{3}, t_{5} and the
, Jlculars at every 10°. Firstly, it can be established for the nation of t_{5} if this first approximation for t_{3} was well chosen. , the process must be repeated, le. t_{3} and t_{5} are again lined. As the actual wing contour can be scrutinized each time If the first approximation is gs good as the former. It is sufficient practically, if only tho first three members of the bIometric series are uss ed.
the present work, 26 trapezoidal airfoils with the same area, the ratio of sides $(\Lambda=5)$ tut different trapezoidal ratios were tlgated. (See Appendix, Table l examples for that purpose, dix, Figs. 4 to 8)
trapezoidal ratio, Fig. 1.

$$
\begin{aligned}
& \frac{b_{m}}{b}=0 ; 0.2 ; 0.4 ; 0.6 ; 0.8 ; 1 \\
& \frac{t_{e}}{t_{m}}=0 ; 0.2 ; 0: 4 ; 0.6 ; 0.8
\end{aligned}
$$

he dimensionless coefficients, $\mu_{1}, \mu_{3}, \mu_{5}$ of the contour function inversely proportional to the ratio of tho sides Λ. For other os of the sides, μ_{1}, μ_{3} and μ_{5} must change correspondingly.
IV. Calculation of Twist for an Elliptical Lift Distribution

The twist function

$$
\alpha_{q}(\varphi)=\alpha_{0}+\alpha_{2} \cos 2 \varphi+\alpha_{4} \cos 4 \varphi
$$

- be found.

The contour functions

$$
\mu(\varphi)=\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi
$$

tho condition, that the circulation distribution shall be elliptical,

$$
G(\varphi)=G, \sin \varphi
$$

$$
C_{a \infty}^{\prime}=\text { constant spanwise }
$$

given.

Analytical. Solution
If, in equation (12),

$$
G_{3}=G_{5}=0
$$

prostituted, then

$$
\left.\begin{array}{l}
\left.\mu_{1}\right) G_{1}=\alpha_{0} \mu_{1}+\frac{\alpha_{2}}{2}\left(\mu_{3}-\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(\mu_{5}-\mu_{3}\right) \\
\mu_{3} G_{1}=\alpha_{0} \mu_{3}+\frac{\alpha_{2}}{2}\left(\mu_{5}+\mu_{1}\right)+\frac{\alpha_{4}}{2}\left(-\mu_{1}\right) \\
\mu_{5} G_{1}=\alpha_{0} \mu_{5}+\frac{\alpha_{2}}{2} \mu_{3}+\frac{\alpha_{4}}{2} \mu_{1}
\end{array}\right\}
$$

trained. Tho solution of the equations elves:

$$
\left.\begin{array}{l}
\alpha_{0}=\left(1+\frac{1}{\mu_{1}} \frac{q}{p s-r q}\right) G_{1} \tag{14}\\
\alpha_{2}=\frac{2}{\mu_{1}} \cdot \frac{p}{p s-r q} G_{1} \\
\alpha_{4}=\frac{2}{\mu_{1}} \frac{1}{p s-r q}\left[\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{3}}{\mu_{1}} p\right] G_{1}
\end{array}\right\} \begin{array}{ll}
0=\frac{\mu_{3}}{\mu_{1}}+\frac{\mu_{5}}{\mu_{1}} & r=\frac{\mu_{3}}{\mu_{1}}\left(\frac{\mu_{5}}{\mu_{1}}-\frac{\mu_{3}}{\mu_{1}}\right)+1 \\
q=1+\frac{\mu_{3}}{\mu_{1}}+\frac{\mu_{5}}{\mu_{1}} \quad s=\frac{\mu_{5}}{\mu_{1}}\left(\frac{\mu_{5}}{\mu_{1}}-\frac{\mu_{3}}{\mu_{1}}+1\right)-1
\end{array}
$$

the numerical values for $\mu_{1}, \mu_{3}, \mu_{5}$ are introduced into these ohs, it is shown that q is much larger than ρ, ρ is much larger than rios $\propto_{q}(\varphi)$ converges very rapidly, so that $\alpha q(\varphi)_{i s} q$ determined iently accurately by three terms. The twist sought is then: $=\alpha_{0}+\alpha_{2} \cos 2 \varphi+\alpha_{4} \cos 4 \varphi$

$$
\begin{aligned}
& \dot{r}_{1}\left[1+\frac{1}{\mu_{1}} \frac{q}{p s-r q}+\frac{2}{\mu_{1}} \frac{p}{p s-r q} \cos 2 \varphi+\frac{2}{\mu_{1}} \frac{1}{p s-r q}\left\{\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{5}}{\mu_{1}} p\right\} \cos 4 \varphi\right] \\
& =G_{1}+\frac{G_{1}}{\mu_{1}}\left[\frac{q}{p s-r q}+\frac{2 p}{p s-r q} \cos 2 \varphi+\frac{2}{p s-r q}\left\{\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{3}}{\mu_{1}} p\right\} \cos 4 \varphi\right]
\end{aligned}
$$

e geometrical angle of attack. f s composed of two parts, the
d anglo of attack

$$
\alpha_{i}=\frac{C_{a}}{\pi \Lambda}=G_{1}
$$

is constant spanwise, and the effective angle of attack which is le spanwise but which is everywhere proportional to

$$
\frac{G_{1}}{\mu_{1}}=\frac{C_{a} / \pi \Lambda}{C_{a=0}^{\prime} / \pi \Lambda}=\frac{C_{a}}{C_{a \infty}^{\prime}}=\alpha_{e} \text { ellipt.Fl. }
$$

15; moreover, the constant lift coefficient, which corresponds with
 of attack, then
10) $=\alpha_{i}+\alpha_{e}$ ellipt. $71 \cdot\left[\frac{q}{p s-r q}+\frac{2 p}{p s-r q} \cos 2 \varphi+\frac{2}{p s \cdot r q}\left\{\frac{\mu_{5}}{\mu_{1}} q-\frac{\mu_{3}}{\mu_{1}} p\right\} \cos 4 \varphi\right.$ ho twist function is calculated for the airfoils examined for
$0.3: C_{a}^{\prime} \times 2 \pi 0.833$. The numerical values of the calculations are in Patio 1 of the appendix: for that purpose, Fig. 4 to 8 of the dix are drawn as examples.

Graphical Solution

quation (9) is transformed into:

$\alpha_{q}(\varphi)=\frac{G_{1} \sin \varphi+G_{3} \sin 3 \varphi+G_{5} \sin 5 \varphi+\ldots . .}{\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi} . \ldots$
$+\frac{G_{1} \sin \varphi+3 G_{2} \sin 3 \varphi}{\sin \varphi}+5 G_{3} \sin 5 \varphi+\ldots$.
an elliptical distribution: $G_{3}=G_{5}=\ldots \ldots=0$
$\alpha_{9}(\phi)=G_{1}+\frac{G_{1} \sin \phi}{\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \phi}$
elliptical wines, the effective angle of attack is
$\alpha_{c \text { allipt.Fl. }}=\frac{G_{1} \sin \varphi}{\mu_{1} \sin \varphi}=\frac{G_{1}}{\mu_{1}}$
$G, \sin \varphi=\alpha_{e} e l l i p t \cdot . F 1 \cdot \mu_{1} \sin \varphi$
$\alpha_{e \text { ellipt.fl. }}=\frac{C_{a}}{C_{a}^{\prime}}=\quad$ the constant effective angle of attack $\alpha_{i}=\frac{C_{a}}{\pi \Lambda}=G_{1}=\quad \begin{aligned} & \text { for elliptical Wings. } \\ & \text { the constant induced angle of attack. }\end{aligned}$
Trio distribution function of the effective angle of attack is obtained Hulsion of the wing chord of the elliptical airfoil by the roximated wing contour (See, appendix, as example, Fig. 4).

Comparison of the Analytical and Graphical Mothods Comparison of equations (1\%) and (16a) must yield agroument orth distribution functions:
$\frac{q}{q}+\frac{2 p}{p s-r q} \cos 2 \varphi+\frac{2\left(\frac{\mu_{5}}{\left.\mu_{1} q-\frac{\mu_{3}}{\mu_{1}} p\right)}\right.}{p_{s}-r q} \cos 4 \varphi=\frac{\mu_{1} \sin \varphi}{\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi}$ For a special case, namely, the elliptical airfoil, ide. $\mu_{3}=\mu_{5}=0$ s the equation to be correct: both sides are unity. The curves what from the graphical process are somewhat smaller in the center, gradually become lares towards the wing tips than those from the ytical procedure. The greatest deviation between the antlitical graphical methods amounts to approximately $2 \alpha_{\text {for }}$ fortanguiar was 16; for delta wings. It can, therefore, be concluded that the tical method is applicable only for rectangular and ellipsoidal OIls.
4. Discussion of the Twist Results.

For ollfftically contoured wings, the angle of attack is stan spanwiso. For trapezoidal airfoils, with taper ratio, $\frac{t_{e}}{t_{m}}=\frac{1}{3}$ Appendix, Fig. ©), the angle of attack is the same in the center
at the wing tips.

$$
\alpha_{m}=\alpha_{e n d}
$$

For all trajezoldal airfoils with a taper ratio $\frac{t_{e}}{t_{m}}<\frac{1}{3}$, the le of attack increases towards the tips. They are liseless. "the ference between the angle of attack at the center rif the win \because nd that the wine tips attains its precisest value for delta wines $\Delta \alpha_{g}=5,4^{\circ}$ For all trapezoidal airfoils win a taper ratio $\frac{t_{\theta}}{t_{m}}>\frac{1}{3}$, inc le of attack decreases towards the tips. Finejare useful. The ference between the angle of attack at the center and that at tine s becomes a maximum for rectangular airfoils, $\Delta \alpha_{q}=2.2^{\circ}$
Comparison with un elliptical "ing Elves a pood at faisal u" thu incise distribution of twist. Wherever the choric it is trap; erna in
ereater than that of an ollaptical (wing), the anglo of attack Ller and conversoly.
? mathematical condition therefor, that tho angle of attack ducruases ilcaliy towards the wing tifs is:

$$
\frac{d \alpha_{9}}{d x}<0
$$

$$
\alpha_{2}>0 \text { or } p>0
$$

the aspect retio Λ increases, the geometrical angle of attack, $\alpha_{q}=$ X_{C}, decreases for the induced engle of attack, $\alpha_{i}=\frac{C_{Q}}{\pi \Lambda}$, distributed omly spanwiso, is inversely proportional to Λ, and the effective =of attack

$$
\therefore \quad \alpha_{e}=\frac{C_{a}}{C_{a \infty}^{\prime}} f(\mu, \varphi)
$$

rependent of Λ. The taper ratio $\frac{t_{e}}{t_{m}}=\frac{1}{3}$ at $\alpha_{m}=\alpha_{e n d,}$ is this for all trapozoldai wings haveing equal wing area and different

Fig. 2
the Influence of C_{a}

Fig. ;
On the Influence of C_{a}
․ Determination of the Angle of Attack which Corresponds to the Change in Proflle for a Elliptlcal Ilit Distribution

1. Ca Spenvise Distribution and the Influence of Ca.

From the condition that the ifft $C_{a} \cdot t$ shall be elliptical lse, a definite coursio of C_{a} is given for each distribution of a1cknoss, t

$$
c_{a}=c_{a \infty}^{\prime} \alpha_{\theta}=c_{a \infty}^{\prime}(\alpha+\beta)
$$

β is the angle of zero $11 \mathrm{ft} C_{Q}^{\prime}$ ls practically oust and con slant 111 profiles.
may vary in three ways.
One and the same profile is retained over the whole span and the anglo of attack is varied so that a definite angle of attack belongs to one value of C_{a} and conversely
$\alpha_{e}=\alpha_{e}$ ellipt.Fl. $\frac{G_{1} \sin \varphi}{\mu_{1} \sin \varphi+\mu_{3} \sin 3 \varphi+\mu_{5} \sin 5 \varphi}$ This problem corresponds to the twist in Chapter V. For
a given distribution of C_{a}, the distribution of the angle of attack is determined uniquely.

The same angle of attack is retained along the entire span and the profile varied, Fig. ?, so that a different value of Ca corresponds to the same angle of attack; 1.0. profiles with different zero lift angles β are available in practice. Thereby, a spanwise distribution of the angle of attack 18 arbitrarily given, and the profile sought, in order to obtain a definite distribution of C_{d}.
c. The angle of attack and profile are both varied (Figure 3). Thereby, a distribution of C_{a} ls given and the profile and anglo of attack are to be found. The later two belong to changes in profile [9].

2. Profile Systematics

A profile $[11,12]$ is characterized $h y$ the magnitude and :ion of the amber and the thickness ratio $\frac{\delta}{t} \beta_{\beta}$ The greater the bor $\frac{f}{t}$, the greater becomes the zero lift angle e_{A} and tho maximum t coefficient, C_{a} max. The farther the maximum camber line lies wards, the farther to the rear is the center of pressure.

The greeter the thickness ratio, $\frac{\delta}{t}$, the smaller is $\frac{d c}{d o}$ maximum value of the lift cairfioient C_{a} max. increases at first with ho thickness ratio, roaches a maximum at approximately $\frac{8}{6}, 0,12$ and hon decreases again, were (fig. 4)
β the angle of zorn lift;
\mathcal{C} the angle of attack α the anglo of attack referred to tho axis of zero 11 fo
3. Graphical Method for the Evaluation of the Distribution of the Angle of Attack

Given the spanwise distribution of C_{a} and the condition that the angle of attack as well as the thickness ratio must decrease cowards the wing tips.
*y. The profiles and the geometrical angle of attack at each: position are to bo found.

Fig. 4: On Profile Systematics

The greater the zero lift angle of a profile, the smaller is the angle of attack which is due to a definite value of C_{a} and the less is the danger of flow separation. It is recommendable that the angle of zero lift of the profile kl as large as possible at the wing. tips, i.e. in practice the camber of the profile shall be proportionally large at the wing tips.

It is sufficient here if the profiles and angles of attack are evaluated at five stations of the semp-wing. The value of Ca is
$=f(\alpha)$ curvo, the induced ancle of attsck, $\alpha_{i}=\frac{C_{\alpha}}{\pi \Lambda}$ calculation and the goometrical anylo of atteck, $\alpha_{q}=\alpha_{i}+\alpha_{e}$, ontelned. (soo 10 to 12 , Numerical Table 2).
in the dutermination of the rango of tho angle of attack up to flow Lion for different locations of the wing, the profiles are plottod on in goometrical angle of attack by, a point in pigure 12 Arpendix, on tho profiles are adjusted for fast flight. Up to $C_{a m a x}$ tho NACA 0021 , has a much smaller range of the angle of attack in tho center of the an NACA 6409 profilo has at the wing tips. In consoquonce the flow tes first in the center of the whe, then eradually outwards to the tirs. special case is where the profiles are to be found for a given bution of the anglo of attack, og. for alstritution of the angle of docressing inearly from the wing oenter to the tips. For a value and for an offective angle of attaok, a dofinit point. in the $C_{a}=f(\alpha)$ can be mosiured. By interpolation, the profile oan be determind, F1g. 5. y this method, an elliptical lift distrinution cen be attalned for apozoidal wings, for the difforence in tho angle of attack betwen ng centor and the tips can bo made.

Example

F18. 5: On the determination of the Distribution of the Angle of Attack as great as the cambers of the profile permit.
4. Mathematical Examination of the Lift Distribution and of the Increase of Induced Dreg
Two omissions are made in this method. The distribution of C_{a} is alculated from the approximate contour function. The coefficients he contour function are determined by assuming that the mean value of selected profiles $\frac{d c_{a}}{d \alpha}$ is constant spanwise. In reality, $\frac{1 c_{a}}{\alpha}$ vary somewhat for different profiles.
For the evaluation of the lIft coefficient and of the angle of atack the flow around the wing has been considered as i plane problem. Acually the individual cross-sections mutually influence one another. (ace problem).

Whether these omissions are permissible will be verified by calculating the devi nation of the lift distribution from the elliptical
ar. the increase in the induced drag, which results from a profile with a eon $\frac{d c_{\alpha}}{d \alpha}$. under the condition that the lift coefficient be rarlable for the calculated five stations of the wing.

Example: Trapezoidal wing: $\frac{t_{e}}{t_{m}}=0.25 \quad G_{1}=0.913 \quad G_{3}=-0.01404$

$$
\begin{aligned}
& G_{3}=0.09253 \quad \frac{G_{3}}{G_{1}}=-0.01541 \quad \frac{G_{5}}{G_{1}}=0.00278 \\
& \frac{\Delta C_{W i}}{C_{W i} \min _{m}}=3\left(\frac{G_{3}}{G_{1}}\right)^{2}+5\left(\frac{G_{5}}{G_{1}}\right)^{2}=0.00075<0.1 \%
\end{aligned}
$$ dag is very small.

VI. Comparison of an Untwisted Elliptical WIng and a I rapozoldel WIng with Twist and profile Variation.

1. Induced Drag.

For elliptically contoured wings, the lift distribution 11Lptical under all flight conditions. For wings with ans contour which an elliptical distribution is attained by twist or profile ration; tho lift distribution 13 elliptical under one flight condition 1], generally under rapid flight. In the first case, the increase 1 If is proportions el to t, in the second case, proportional to $t \cdot \frac{d c_{a}}{d \alpha}$ Hover, the $C_{a_{m a x}}$ values (19) and the corresponding increase of the of attack are ascertained. The lift distribution and the incroeso induced drag are then calculated. It became evident that the worse in the induced drag is less than one percent (19.), in general, 11 for $C_{a_{m a x}}$ on account of this deviation of the lift distribution the elliptical. The smaller the trapezoid ratio, the more 1.vomeble are the relations.
2. Flow Separation, Lateral Stability and Distribution Loss For an elliptical wing with constant angle of attack pulse, the flow separates almost simultaneously at all points, ie. l profiles attain their maximum lift values simultaneously. Lateral p111ty at stall is poor.

A trapezoidal wing with an angle of attack decreasing from the wing gator to the tips has only one place in the center where the flow prates first and a $C_{\text {max }}$ value appears. Not every profile attains max mum lIft coefficient, because the total int is smaller for a rpezoidal wing than for an elliptical wing with the same wing area
3. Comparison. With Former Experimental Results.

- C. B. Millikan [12] has experimentally established that IW separation occurs for a rectangular wing first in the center of tho : 3 , for a trapezoidal wing first at the tips, moreover invariably the racer edge. Prandti $[16]$ previously found the same results.
the case of elliptical wings the flow has to separate everywhere iltapeously, but Prandtl showed in his experiments that the flow antes first at the tips. Irving [13] tested trapezoidal wings straight loading and trailing edges. LIt was shown that tho flow prates in the case of a trapezoidal wing, in the center of the having a straight leading edge and in the rear third of the wing ing a straight trailing edge, Huebner [lV calculated theoretically
the loss in lift for a conventional trapezoidal wing with a constant file is approximately ono percent (la) compared to an elliptical wine equal area.. A. E. Lombard $[14]$ established, in wind tunnel tests. the flow for a strongly tapered trapezoidal wing, having a tip profile large $C_{a m a x}$ value, separates first in the center. Even in flight, observed that the stability is satisfactory. I. H Crow [Ez] fired that a twist of 8° is sufficient to prevent premature separation the flow at the wing tips. Large values improve the stability but reasos the profile drag too much.

From the experimental results it appears:

1. That the flow separation at the wing tips is limited not only by the attitude; of an individual cross-section but also by the wing form and the aft distribution altered simultaneously' thereby (See Appendix, Table 3).
2. That for the prevention of premature flow separation at the wing tips of rectangular wings, no twist is needed compared to the greater twist of about. 6° to $\ddot{3}^{\circ}$ for strongly tapered trapezoidal wings.

According, to the results of calculation for an elliptical lift tribution in chapters IV and V, the twist for an approximately tangular wing amounts to about 2° (see appendix, figure $\bar{s} \frac{t_{e}}{t_{m}}=1$), a strongly tapered trapezoidal wing to about i° (See A Al y endix, Fifth. The twist is according to the results of calculation; somewhat after for a rectangular wing, somewhat smaller for at strongly tapered
ezoldal wing than that of experimental results hitherto obtained. The twisted rectangular wing is thus more advantageous than the listed. and has therefore more lateral stability. The flow separation strongly tapered trapezoidal wings with a change in profile begins t in the center. and proceeds then gradually outwards to the tips Chapter $V, 3$). It is influenced by the trapezoidal form, according nether it is provided with straight leading or trailing edges, is ne $[13]$ established experimentally.
The results af calculation for an elliptical lift distribution and experimental results previously reported agree sufficiently well in e of small deviations.

The development of the JU-86 wing, reported by A. W. rulck [19] in 1936 Yearbook of the Lilienthal: Company for Aeronautical Research n good agreement with my experimental results.

VII. Twist for an Arbitrary Lift Distribution

If the lift distribution is known and non-elliptical, the ficients G_{1}, G_{3}, and G_{5} of the circulation distribution can yo be determined by the same graphical method as the coefficients ho contour function, t_{1}, t_{3} and t_{5}. An arbitrary inf ribution has bon resolved into one elliptical, $G, \sin \varphi$ and two lift distributions, $G_{3} \sin 3 \varphi$ and $G_{5} \sin 5 \varphi \varphi_{\text {while the integrals: }}$:
$\int_{-\frac{b}{2}}^{+\frac{b}{2}} \sin 3 \phi d x=0 \quad: \int_{-\frac{b}{2}}^{+\frac{b}{2}} G_{5} \sin 5 \varphi d x=0$
The values of G_{1}, G_{3}, and G_{5} are substituted in equation (12) thereby three equations in three unknowns α_{1}, α_{2}, and α_{4} are a obtained.
VIII. Summary

In the case of a trapezoldal wing with a tacer ratio, $\frac{t_{e}}{t_{m}}>\frac{1}{3}$ olliptical distribution with good lateral stability at stall
n be obtalned by twist or nroflle change or both.
For a trapozoidal wing with a taper rat:o, $\frac{t_{e}}{t_{m}}<\frac{1}{3}$ an olliptical strlifution without endangering the latoral stabllity can be attalnod Ily by variation in profile or by change in frofile and twist. The teral stabllity is somowhat bettor for a weakly tapered trapezoidal
ng than for a strongly tapered one.
IX. Reforences

灰 Fuchs - Hopf - Soewald - Aerodjnamics - Vol. II - 1932.
[2] L. Prendtl: Four Essays on Hydro - and Aero - Dynamics Wing Theory I and II.
[3] Max Munk: Isoperimetric Problems on the Thoory of Flight. Inaug. Thes 1s, 1919.
[4] Betz: Contributions to Wing Theory with Special Consideration of a simple kectangular Wing. Gottingen. 1919.
[5]. J. Lotz: Csioulation of the Lift Distribution of an Arbitrarily shaped.Wing. Z. Flugtechn. Vol. 21 (1931).
[6] H. Glauort: Fundamentals of Wing and Alr Screw Theory. Berlin, 1929.
[\%] A. Lippisch: A Method for the spanwise Lift Distribution. Luftf Forschg. Vol. 12 (1935) p. 89.
[8]. A. V. Stephens : The Spin of Airplanes. Luftf Porschg. Vol. II, (1934) p. 140 .
[9] Lachmann: Aerodynamic and Structural Features of Tapered Wings J. Roj. Aeron. soc. (1937) III. pp. 176-179.
[10] Eavtman, N. Jacobs, Kenneth E. Ward, and Kobert M. Pinkorton: The Characteristics of 78 related Airfoll Sections from Tests in the variable-Density Wind Tunnel. NACA Kep. 460, 1933.
[11] Jacobs, N. Eastman and Robert Pinkerton: Tests on the Varlable pensity Wind Tunnel of Related Airfolls Having tno Maximum Camber Unusually Far Forward. T.R. Na. 537, NACA 1935.
[12] Clark B. Millikan: on the Stalling of Highly Tapered Wings. J. Aeronutical Sci. Bd. 3.(1936) Page 145.
［13］Irving，Some Notes an Taperud Wings，Aircr．Engng．Vol． 9 （Iy？（） No． 96 ， 11,1937 ，f． 31.
［14］A．A．Lombard：Iechnological Devolopment of the Curtiss－Wright

［1－］I．H．Crowe：An Examinetion of the Characterisiles of u fopular Iype of Wing：Aircr．Engnt．Vol．\} ($1 ; 6$ ）No．Ul， XI，p．2 $こ$ 。
［16］L．frindta：kesuits of the Aerodynamic Expirmentel Station at Gottingen I，Lfe．（15：21），i． 67.
［17］．J．Hueter：The Aerodynamic provertlos of Double Irapezoidal Wings\％．Fluptechn－Vol． 33 （1933），－ 271 ．The Twisted Wing， 2．Flugtechn．Vol． 23 （1933），p． 307.
［18］Kaymond F．inderson：Determinition of the Crarecter－stices of Infered Winf：NACA Res． 72 （1936）μ ．I上。
［10］A．W．wuick：Lillenthal－＇Gesellachaft rur Lititfahrtiórschung， （Lilienthisl Co．for Aeronhatical．Rerearch．Yr．lishe，f．l＇j frinter K．Oldenknurg－Muncton－Berlin）．

Fig．l on the apiroximation

Fig． 4 Calcuiation nf Twist

$$
b_{m} / b=0, t_{p} / t_{m}=0.2, \lambda=5
$$

Calculation of Twist

Trapezoid Ratio

$\frac{b_{m s}}{b}=0.6, \frac{t_{e}}{t_{m}}=0, \lambda=5$
Determination of Taper $t_{\text {trap }}$

Ratio

For which

$$
a_{m}=a_{\text {end }}, \frac{t_{a}}{\varepsilon_{m}} \approx \frac{1}{3},\left(\frac{b_{m}}{b}=0\right)
$$

Fig. 6 Calculation of Twist
Trapezoid katio

$$
\frac{b_{m}}{b}=0.4, \frac{t_{e}}{t_{\text {an }}}=0.4, \lambda=5
$$

 Trapezoid Rat. Lo

$$
\frac{b_{m a x}}{b}=0.8, \frac{t_{c}}{t_{m}}=0.4, \lambda=5
$$

Fig. 10 Distribution of Angle of Attack by Change in Profile

Fig. 11 Distribution of Angile of Attack by Change in Profilo Tranezoid Ratio

Fig. 12 Range of Anglo of Attack to Flow Separation for Different profiles

Mean Geometrical Angle of Attack

- TABLE I
ajculation of the rwist $\left(\Lambda=5 ; c_{\alpha}^{\prime}=2 \pi 0.833\right)$.

TABLE II
nange an profile: $\Lambda=6 ; \dot{c}_{a \infty}^{\prime}=2 \pi 0.91$

TAFBLE ? TI

ison of Trection Suriaces With and W,thout qulst

DEFENDANTS' EXHIBIT AAA

District Court of the United States, Southern
District of California, Central Division
Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California Corporation, Plaintiffs,

VS.
CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#7

It is hereby stipulated subject to proof of error that the appended are reproductions of printed publications and that said copies may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence, viz:
"Exhibit 31 " is a reproduction of page 140 No. 6 issued in the year 1937; "Exhibit 32 " is a reproduction of page 419 No. 6 issued in the year 1937; "Exhibit 33 " is a reproduction of page 609 No. 22 issued in the year 1937; "Exhibit 34" is a reproduction of page 421 No. 16 issued in the rear 1938;
"Exhibit 35 " is a reproduction of pages 144 and 145 No. 6 issued in the year 1939.

All are included in a periodical entitled "Flugsport" published and issued by "Flugsport" in Frankfurt, Germany, on said dates, respectively.

Exhibits 31a, 32a, 33a, 34a, 35a are translations of said articles respectively, subject to correction if any errors are found.

Attorneys for Plaintiffs.
/s/ ROBERT B. WATTS,
/s/ FRED GERLACH,
Attorneys for Defendants.

Exhibit 35a

Translation of page 144, No. 6-"Flugsport"' (1939)
Performances and wing design of the DFS Reiher and DFS Weihe gliders were used in the construction of DFS Meise; for the root wing profile, Go 549 was thickened 16%; in the outboard wing Go 676 was used.

Illustration \#1 shows that this profile is most suitable for the requirements of a compromise plane. The Ca region so important for this purpose is located between 0.6 and 1.4. Profile 549 is referred to twice in the series of experiments at Goettingen. As the coefficients disagree considerably, a third measurement has been undertaken by the DFS in a new larger tunnel at Goettingen-in illustration \#1 marked III. A fourth comparative measurement
should be based on the coefficients of profile Go 426.
This profile is identical with 549 with a slight change in thickness. For the purpose of comparison Profiles Go 532 and Go 535, well known in the construction of gliders as well as NACA 23012 are noted in the illustration; it was considered desirable to mathematically reduce the "Profile Resistance" of all these profiles to the thickness of Profile 549 , Illustration I indicates that even if the most unfavorable units of measurement are used, the highest Ca is 0.6 , Goettingen 549 is the best. Whether NACA 23012 is better for speed cannot be decided because of discrepancies in the measurements undertaken by DVL, compared to the measurements undertaken in the 7×10 tunnel and those in the American super-pressure tunnel. We shall have to wait for further measurements, possibly some taken in flight. On the other hand, it is a wellknown fact, that Go 535 is the most favorable solution for slow flight.

In the outer panel of the wing from 0.6 of the semi-span Profile Go 676 has been used instead of 549 ; significant for Go 676 is the wide Ca range.

Admitted November 24, 1950.

DEFENDANTS' EXHIBIT BBB

District Court of the United States, Southern District of California, Central Division Civil Action No. 10930-Y

MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs, vs.
CONSOLIDATED VULTEE AIRCRAFT CORPORATION, A DELAWARE CORPORATION, AND AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#8

It is hereby stipulated subject to proof of error that the appended "Exhibit 36 " is a reproduction of pages 355 to 356 Vol. XVIII fasc. 3 of a periodical entitled "L'Aerotecnica" issued and published by the Institute Poligrafico Dello Stato in Rome, Italy, during the year 1938, and that "Exhibit $36 a$ " is a translation of said article (subject to correction if any error is contained therein) and that the said copy and translation may be used in evidence with the same force and effect as originals, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence.

> LYON \& LYON,
> /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
> /s/ ROBERT B. WATTS,
> /s/ FRED GERLACH, Attorneys for Defendants.

Exhibit 36a
Translation L'Aerotecnica Vol. XDIII fasc. 3, 1938, Pages 335 and 336

Figure 8
The "Asiago"
High Performance Glider (Italian)
Description:
Wing:
The "Asiago" has a high wing, of monospar construction, with one streamlined steel strut on each side. The wing spar is of the box type and made of laminated fir. The leading edge acts as a second spar to prevent wing torsion. Airfoils used are: G535 for the rectangular part of the wing, M6 for the tapering extremities. Transition from one airfoil to the other is linear.

The ailerons are rather big. The differential control has a ratio of $1: 2.5$. Ball bearings are used everywhere in the aileron controls. This makes for an extremely smooth lateral control of the airplane.

Almost all metallic parts are of national duraluminum.

To facilitate landings and flight in clouds, two slotted spoilers are mounted above the wings. With these open, rate of descent can be increased by more than $200 \mathrm{ft} . / \mathrm{min}$.
Fuselage:
The front part of the fuselage has a hexagonal section, rounded at the top, while the rear part is conical. The fuselage is of the hull type. The cock-
pit is very comfortable, having been designed for minimum pilot fatigue in flights of a long duration. The towing mechanism, which can be used for either winch launching or actual air towing, can be released through a small lever. The barograph is installed close to the pilot's head. The landing skid is robust and well suspended.

A tennis ball is used to absorb tail skid shocks.
The control stick is mounted on ball bearings.

Empennage :

Horizontal surfaces are cantilever. The stabilizer is attached to the fuselage by only four bolts. Controls are all inside the hull.

The "Asiago" has been built for maximum maneuverability, keeping in mind low cost and ease of construction. Imported materials represent a negligible portion of the total, as wide use has been made of fir, poplar, and dural, all available in Italy.

The "Asiago" has passed the tests of the "Acrobatic gliders' category.

```
Glider "Penguin G.P. 1"
```

The Penguin G.P. 1 is a glider of high efficiency built as a project of the Application Center of the Politechnic Institute, financed by the Institute. Vittorio Bonomi, well known glider pilot, and Angelo Ambrosini, Engineer, have collaborated in its construction.

General characteristics:

$$
\begin{aligned}
\text { Wing Span . } & 50 \mathrm{ft.} \\
\text { Length } & 21 \mathrm{ft} .4 \mathrm{in.}
\end{aligned}
$$

Wing Surface	164 sq. ft.
Aspect ratio	15
Weight Empty	375 lbs .
Useful Load	175 lbs .
Total Weight	550 lbs .
Wing Loading	$3.1 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft}$.
Strength Coefficient	9
Minimum Sinking Speed	$136 \mathrm{ft} . / \mathrm{min}$.
Angle of Descent	1:25.3

Description:
Cantilever wing, with diehedral in the center section. This insures good stability and unobstructed visibility in all directions. Monospar wing-Airfoils G535 for the rectangular part of the wing, NACA 23012 for the tapered extremities. Transition between the two airfoils is linear. In the immediate vicinity of the fuselage, airfoil section G535 progressively becomes an NACA 0015 . The transition is parabolic. The ailerons have a big surface, and there are two pairs, the outboard ailerons having a bigger displacement angle. This gives an excellent lateral control. Aileron control is through double differentials, ratio $1: 2.5$.

Admitted November 24, 1950.

DEFENDAN'IS' EXHIBIT CCC

District Court of the United States, Southern

 District of California, Central DivisionCivil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs,
vs.
CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#9

It is hereby stipulated subject to proof of error that the appended are reproductions of printed publications and that said copies may be used in evidence with the same force and effect as originals, subject to any objection which may be made thereto as irrelevant or immaterial, when offered in evidence, viz;
"Exhibit 37 " is a reproduction of page 116 of a printed text book entitled "Sailplanes" issued and published by Chapman Hall, Ltd., in London, England, during the year 1937; "Exhibit 38 " is a reproduction of pages $80-81$ from a printed text book entitled "Flight Without Power" issued and pub-
lished by Pittman Publishing Corporation in New York, N. Y., during the year 1940; "Exhibit 39" is a reproduction of pages 128-129 from a printed text book entitled "First Flight Principles" issued and published by the American 'Jechnical Society in Chicago, Illinois, during the year 1941; "Exhibit $40 "$ is a reproduction of page 69 from the printed text book entitled "Aircraft Design" Vol. 1, issued and published by Chapman and Hall in London, England, in the year 1938; "Exhibit 41 " is a reproduction of pages $68,69,7 \pm, 75,78,79$ and 92 of a publication of the "Flugtechnische Fachgruppe" issued and published by Technischen Hochchule of Aachen, Germany.

> LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
> /s/ ROBERT B. WATTS, /s/ FRED GERLACH, Attorneys for Defendants.

the L / D ratio at high angles of attack. This is in addition to its structural advantages which are great. Another may be mentioned. Satisfactory controlling effect may be obtained with smaller ailerons when the thicker sections are used in the wing.

Made possible by the development of the thick sections. the tapered wing has lately become very popular
with designers. There are numerous reasons for this popularity. Some of these are structural and some are aero. dynamic.

There are four ways in which the tapered wing may be constructed The first and simplest of these is the tapered planform. Fig. 16. In such a wing, the greatest chord is the root chord. This lies nearest the fuselage As the tip is approached, the chord decreases in length and with it all of the other dimensions of the section decrease in like ratio. If, for example. the chord at the tip is one-half of the chord at the root. the maximum up. per ordinate at the tip is one-half of the maximum upper ordinate at the root and so on.

Fig. 17 shows another manner in which a tapered wing may be constructed. Here the planform is left rectangular and the thickness of the section is decreased as the tip is ap. proached. The latter method is the same as multiplying all of the ordinates by some multiplier to obtain the ordinates for the section at each point To show what is meant by this we choose another example. Suppose t| we have already decided the length the chord. This will remain const: throughout the span of the wing. At the tip we desire to have our wing only one-half as thick as it is at the root. We multiply all of the ordinates of the root section by \bar{j} and the results will be the ordinates of the tip section To obtain the crdinates of a section midway between the two. we multiply the ordinates of the root section by .75 . There is thus established a relation betwien the location of a section and its crd nates. If we desire the ordinates of a section that lies midway betwern the
m : section already determined and the root. we seek a number which lies midway between .75 and 1 . Obviously such a number is 875 and we obtain the ordinates of the desired section by multiplying the ordinates of the root section by .875 . This will give the ordinates of the desired section. Similarly, to find the ordinates of a section that lies midway between the mid-section and the tip. we multiply the root ordinates by a number midway between .75 and .5 and this is, of course. . 625. In this way we are able to construct a tapered wing having a variable section throughout its length. The section at any point, however, bears a simple relation to the section at the root.

There is a third way of tapering a wing that is a combination of t two mentioned. Fig. 18. Here the wing is tapered both in planform and in thickness. Certain advantages may be claimed for each of these types of tapered wings. A discussion of them does not properly come within the scope of this text. The individual prejudices of the designer are in many cases the determining factor in the selection of the type of taper used. Taper in thickness only is seldom used. Taper in planform is probably the most popular among designers.

There is another form of tapered wing in which the section at any point bears no simple relation to the root section. Fig. 19. According to this method, a section is selected which gives a satisfactory spar depth and satisfactory aerodynamic charac-
istics for each point of the wing.
All of the advantages that are possessed by the thick wing sections are possessed by the tapered wing. In ad-
dition. there is a great decrease in the weight of the structure. This follows, because the bending moments and shearing stresses are greatest near the root of the wing. and the tapered construction allow's the wing to be strongest at the points of greatest stress. It is an ideal construction for a monoplane because of the general cleanness of design that it permits. The entire wing structure is internal No external braces are required and the parasite drag is diminished by the amount of the drag of the eliminated external parts. Some disadvantage attends, however. The use of such a construction usually means an increase in structural weight. The addition of any weight to the structure diminishes by the same amount the useful load that the airplane will carry. This increase in weight, it must be remembered, applies as compared to airplanes that are constructed with wings of moderate thickness. As was mentioned earlier, the tapered wing, cantilever construction, allows a decrease in structural weight over that of the thick wing constant section construction. Hence, the thick sections are suitable only for root sections and are commonly so used.

Aspect Ratio

See Fig. 20. There is a dimension of the airfoil that is of considerable importance in performance. It is not a dimension of the section but is a dimension of the wing itself. We are interested in the effect that the shape of the wing has upon its characteristics. We are interested for the same reason that we were interested in the shape of the section. We desire to find a shape which will give us the maximum amount of lift with a minimum amount of drag.

LIFTING SURFACE AND TYPES OF AIRCRAFT

come, to a large extent at least, by giving a twist to the wing, though theoretically the geometric twist necessary to produce an elliptical C_{L} distribution across the span is considerable, varying from about -13° for a taper ratio of 2 , to -20° for a ratio of 5 (the twist should not be uniform, but should increase progressively towards the tip), and this in turn causes increased induced drag, the increase for a 20° twist being roughly 10 per cent. for a ratio of $2 \cdot 5$, and 20 per cent. when the taper ratio is 5. On account of this it is doubtful whether a twist greater than 3° or 4° should be used, and 2° might be regarded as a preferable limiting figure.

In practice a lesser amount of wash-out than the theoretical figures given above has been found necessary due to the presence of a fuselage, or engine nacelles, which have the effect of accelerating the advent of unstable, or stalled, air-flow over the inner part of a wing.

A better method of preventing tip-stalling, or one which may be profitably employed in conjunction with a small degree of twist, is to increase the camber from root to tip, or at least over the outer sections of the wing. Alternatively, the aerofoil section may be graded along the span so that the tip section has a greater angle of maximum lift, sufficient wash-out being employed to keep the angle of zero lift constant along the span. Increase of camber results in a greater angular range of lift,* i.e., from the no-lift angle to the angle for $C_{L \text { max }}$, the greater angle of the latter being made use of for delaying stalling towards the wing-tips. For taper ratios up to 4 , a camber grading of from, say, 2 per cent. at the root to 5 or 6 per cent. at the tip is generally sufficient for satisfactory results.

Aerofoil sections with rearward position of maximum camber, ${ }^{+}$ i.e., behind the one-third chord position, give better results than forward camber locations. Rearward shift of the point of maximum camber over the tip portion of a wing is likewise beneficial in this respect.

Another solution to the tip-stalling problem, and again one that may be used in conjunction with camber variation, is provided by suitable grading of the wing thickness over the outer portion of the span, but avoiding, if possible, the rather critical region of 12 per cent. \ddagger

[^2]DEFENDANTS' EXHIBIT GGG

District Court of the United States, Southern
District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#14

It is hereby stipulated subject to proof of error that the appended "Exhibit 128 " is a reproduction of page 5 of the issue of February 5, 1938, of the printed publication "Le Vie Dell'Aria" containing an article entitled "Tre nuovi veleggiatori italiani" published and issued by Editorial Aeronautica in Milan, Italy, in the year 1938, and that "Exhibit 128a" is a translation of said article (subject to correction if any error is contained therein), and that said "Exhibit 128" may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as

Defendants' Exhibit GGG-(Continued)
irrelevant or immaterial when offered in evidence, viz;

LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

Exhibit 128a

Translation from Italian AJM:MS Three New Italian Gliders

At the Arcore (Monza) Airport, where there took place the first flights of the one who is today the first aviator of Italy, there took place a few days ago the testing of three new gliders constructed during the last six months. The collaboration of the Center of Studies and Experiments for gliding of the Royal Polytechnical and of the GUF of Milan, on the one hand, and of the Aeronautica Lombarda, on the other hand, have resulted, with characteristic Fascistic rapidity, in a range of gliders which places Italy at the height of the most progressive countries, even with respect to gliding. There are not concerned planes constructed under license with foreign designs or copies like some planes which were made last year, but new models constructed on basis of the latest inventions and the latest Italian and foreign experience.

Each one of the three planes represents a stage in

Defendants' Exhibit GGG-(Continued)
the training of glider pilots of high class and in the sport development of future sport groups.
These are:

1. The "ASLAGO G.P. 2 " designed by Garbell and Preti of the CVV, a glider for thermal soaring (C and D license).
2. The "ALCIONE B.S. 28" of Bonomi and Silva (Aeronautica Lombarda), an intermediate glider for high altitude gliding.
3. The "PINGUINO G.P. 1" of the CVV, a glider of the highest quality with which the college students of Milan will participate in the contests during the next season.

As we already announced last October in "Le Vie dell'Aria," the manufacturing program of the CVV is greatly assisted by the aeronautical fans Vittorio Bonomi and Eng. A. Ambrosini. The prototype of the CVV have been built by the shop-workers of the "Aeronautica Lombarda" and partly in the Cantu shop which up to the present time has supplied almost all the Italian elementary training gliders. At the same time the "Aeronautica Lombarda" has started the construction on a mass production basis of the models of the CVV, which has awakened general interest not only among the Italian glider pilots but also among the foreign pilots and organizations. Thus the collaboration between the CVV, a technical, scientific and sporting organization par excellence which must not and cannot attend to the mass production of its models, and the "Aeronantica Lombarda," a manufacturing plant of rast experi-

Defendants' Exhibit GGG-(Continued)

 ence, was able to create in a short time these gliders for which the Italian pilots had been waiting.The "Asiago G.P. 2" was born at the Aeronautical Exhibition of Milan. Thousands of visitors stopped in front of the stand of the RUNA and were present during the first stage of the assembling of this glider.

Here are its principal characteristic features:
Wing span 13.70 m .; length 6.50 m .; surface of the wings 12.70 m 2 ; aspect ratio 14.8 ; weight without load 120 kg ; useful load 90 kg ; total weight 210 kg ; wing loading $16.5 \mathrm{~kg} / \mathrm{m} 2$ strength coefficient 9 ; minimum velocity of descent 0.80 m . per second; gliding angle 1:20.

The wing, of the mono-spar type with torsionresisting leading edge, has a single profiled strut. For the purpose of good aero-dynamic efficiency and of low sucking speed of descent, there has been selected a comparatively large aspect ratio (14.8). The ailerons are very large (2.55 m 2) and have a differential motion of a ratio of $1: 2.5$. On the upper side of the wing there is applied the well-known CVV flap which serves to increase, as may be desired by the pilot, the speed of descent of the apparatus, which is very necessary when landing outside of the aviation field and for flying into clouds. The CVV spoilers constitutes a simplified variant of the Jacobs spoiler (DFS).

The ample fuselage follows in general lines that of the "Anfibio Varese" of Rovesti-Mori. It is hexagonal (rounded) at the front part, and of rhombus

Defendants' Exhibit GGG-(Continued)
sections towards the tail. The pilot's seat is ample and commodious; it fits the shape of the body thus reducing to a maximum the fatigue of long flights. The cables of the pedal pass through the space between the double wall leaving the pilot's seat entirely free. The control stick is of duraluminum tubing so as not to affect the compass. All the controls move on ball bearings. Behind the head of the pilot between the fourth and fifth frames of the fuselage, there is a box for the recording barometer. Its cover serves at the same time as hand support. On the Asiago, the troublesome problem for the rest for the left hand has been solved. A simple but comfortable duraluminum rest finally assures the pilot the desired rest for his left hand. Near this rest are located the levers for the operation of the flaps and for the releases. The two releases-the open one for winch launching and the closed one for the air drag -are simultaneously opened with a single handle.

The horizontal empennage is of the cantilever type and is attached to the fuselage by means of three bolts, in addition to the inside control bolt. The rudder is low and of modern lines.

The greatest attention has been given to obtaining ease of operation in the controls, in connection with which up to the present time, many gliders used to leave a great deal to be desired. Λ s is universally known, the sensitivity of the elevator of a glider: is equal to, if not superior than, than that of a motor airplane; the ailerons are already more inert, but worst of all is the rudder which generally

Defendants' Exhibit GGG-(Continued) has very little effect. In the Asiago, the ailerons are very efficient, this being due to selected profiles (G 535 and NACA M6) and also due to the aerodynamic wing warp. The rudder on the other hand has been placed behind the elevator in order to increase the arm and therefore the momentum. The apparatus responds very well to the controls. Someone who perhaps exaggerates states that "it is just like a CR." This arrangement has the advantage of also avoiding interference between the horizontal and vertical empennages during spinning, as was discovered a few months ago by the Zurich scientist Haller.

The landing members are the following: a standard front skid and a small tail skid made resilient by means of a tennis ball.
In the construction of the "Asiago," considerable use was made of material produced in Italy (fir, poplar, duraluminum).

The "Aeronantica Lombarda" is now manufacturing the "Asiago" on a large production basiswhich plane, due to its simplicity, can be sold at comparatively low price-which, in addition to the surprising flight qualities which are superior to all the Italian and foreign planes manufactured up to the present time, will greatly favor its diffusion.

The "Alcione B.S. 28" of Engineer Camilla Silva is endeavoring to meet the need felt by the schools for high altitude gliding, which desired a comparatively economical plane which still had flying qualities like those of the large gliders in order to im-

Defendants' Exhibit GGG-(Continued)

prove the training of pilots who have already completed their training in the gliding school.

Here are the technical specifications of this glider: wing span 14.50 meters; length 6.55 meters; area of the wings 14 square meters; aspect ratio 15; weight without load 160 kgs ; useful load 85 kgs ; total weight 245 kgs ; wing loading $17.5 \mathrm{~kg} / \mathrm{m} 2$; strength coefficient 9 ; minimum velocity of descent $0.75 \mathrm{~m} / \mathrm{sec}$. ; gliding angle $1: 22$.

The "Alcione" is provided with a middle wing, full cantilever, straight, and of a fully tapered plan.
The profiles used are G449, G693, NACA 23012, NACA 0012.
The entire trailing edge is occupied by movable surfaces. The inside third forms the camber flaps controlled by a lever located on the left side of the pilot. The other $2 / 3$, the "ailerons," are divided into halves and are controlled with double differential. In addition to the differential motion between the right-hand aileron and the left-hand aileron, the outer aileron has a greater amplitude than the inside one and this motion approximates the warp of the wings of birds, thus improving the transverse maneuverability.

On the upper side of the wing, there is located the CVV flap.
The fuselage is of hexagonal section with rounded upper part. The tail surfaces correspond to those of the Asiago.
In addition to the main skid, there is a small cen-

Defendants' Exhibit GGG-(Continued)
tral wheel which facilitates the landing and the take-off.

Finally, the "Pinguino G.P. 1" has all the characteristic features of a large glider: middle M wing, rounded fuselage, very accurate connections. Its construction was made possible by the generosity of the Royal Polytechnical and of the well-known glider pioneer, Vittorio Bonnomi. Here are its characteristic features:
Wing span 15.30 meters; length 6.50 meters; wing surface 15.20 square meters; aspect ratio 15 ; weight without load 170 kgs ; useful load 80 kgs . total weight 250 kgs . ; wing loading $15.2 \mathrm{~kg} / \mathrm{m} 2$; strength coefficient 9 ; minimum descending velocity 0.69 $\mathrm{m} / \mathrm{sec}$.; gliding angle $1: 25.3$.

The wing is a full cantilever and has a dihedral angle of 6° at the central part. The profiles used are the G 535 and the NACA 23012, with aerodynamic warping of about 3°. The wing is of the single spar type. The ailerons are very large and have a strongly differential control. Also here, the CVV flaps are not missing.

The fuselage is of ovoid section. Special care was given to the connection between the wing and the fuselage.

The excellent flying qualities of these three new gliders have been shown by tests carried out on January 29th and 30th last, at the Arcore Airdrome by the Engineer, Colonel Nannini and by the In-

Defendants' Exhibit GGG-(Continued)
structor Aldo Tavazza, who, with the gliders, carried out some stunts, after having been released from the tugging plane at a height of 1,000 meters. There were present at the tests of the new gliders: Prof. Cassinis, President of the E. De Amicis Study Center; Engineer Silva of the Aeronautica Lombarda for gliding; Instructor Plinio Rovesti of Varese, and Engineer Bracale of the Aeronautic Registry.

The flight tests have fully confirmed the maneuverability and stability of the new gliders and will soon be followed by soaring tests. It must be noted that in the afternoon of the 30th, the Pilot Venturini effected, with the "Asiago G.P. 2," a series of stunts which were perfectly successful in view of the trim compensation of the glider. The pilot, who is a holder of a " C " flying license and of a firstgrade airplane license, had not up to that time done any stunt-flying.

MAURIZIO GARBELL.

Caption Under Illustration:

Top: The "Alcione B.S. 28" taking off under the pull of the winch. There can be noticed the low camber flaps.

Bottom : The "Pinguino G.P." in full flight.
Admitted November 24, 1950.

District Court of the United States, Southern District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation,

Plaintiffs,
vs.
CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#15

It is hereby stipulated subject to proof of error that the appended "Exhibit 129 ' is a reproduction of pages 58 and 59 of Issue No. 3, February 2, 1938, of the printed publication "Flugsport", containing an article entitled "Leistungssegler 'Pinguino G.P. 1' ", published and issued by Flugsport in Frankfurt, Germany, in 1938, and that "Exhibit 129a" is a translation of said article (subject to correction if any error is contained therein), and that said "Exhibit 129" may be used in evidence with the same force and effect as an original, subject to any
objection which may be made thereto as irrelevant or immaterial when offered in evidence, viz;

LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.
/s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

Exhibit 129a

Translation from "Flugsport" Feb. 2, 1938
No. 3, p. 58-59
High-Performance Glider "Pinguino G.P. 1"
The glider was built in the second half of the year1937 by students of the Milan Technical College, with financial aid from the College, from the noted advocate for gliding flight in Italy: Vittorio Bonomi, and from the aircraft industrialist Angelo Ambrosini. The design for the machine came from Garbell and Preti, of the CVV (Centro Studi ed Esperienze per il Volo a Vela).

The "Pinguino" is constructed as a mid-wing cantilever with a gull wing. Single-spar construction; with plywood nose. Profile to the bend, Gottingen 535 ; from here outward it merges linearly into the NACA 23012 section. At the transition from the wing to the fuselage the G 535 wing section rums into the NACA 0015 fuselage profile. Big ailerons; double differential control, with an angular deflec-
tion ratio of $1: 25$. The outer halves of the divided ailerons are more deflected, whereby a considerable improvement of their action is obtained. A further advantage consists in that, during bending of the wing, no binding of the ailerons occurs. (An old and typical example of this arrangement is the Russian long-distance craft "Ant. 25," whose ailerons are subdivided into four single flaps). For the purpose of increasing the rate of descent at will, two CVV spoiler flaps are installed on the suction side, which, in the manner of the braker flaps developed by DFS (see "Flugsport" of 1937, page 350), may be deflected forward on a circular are, and thereby leave a gap open between the lower edge of the flap and the suction side of the wing.
Fuselage of oval cross section, coming to an edge underneath. Comfortable pilot's seat. Instruments fastened to the fuselage itself, not to the cowling, in order that the cowling may not become too heavy, and possibly hinder rapid emergence when there is danger. The cowling is held in place by a DFS speed catch. The release lever simultaneously operates the open winch hook and DFS tow coupling, which are prescribed in Italy.

Wing span, 15.3 m ; length, 6.5 m ; area 15.2 m 2 ; aspect ratio, 1.15 ; empty weight, 170 kg ; load, 80 kg ; flying weight, 250 kg ; wing loading, $15.2 \mathrm{~kg} / \mathrm{m} 2$; breaking load factor in case A, 9; minimum rate of descent, $0.69 \mathrm{~m} / \mathrm{sec}$.; maximum drag/lift ratio $1: 25.3$.

Translated by W. G. Weekley.
Admitted November 24, 1950.

DEFENDANT'S' EXHIBIT III

District Court of the United States, Southern
District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#16

It is hereby stipulated subject to proof of error that the appended "Exhibit 130 " is a reproduction of pages 538 and 539 of Issue No. 20 of September 29, 1937, of the printed publication "Flugsport" published and issued by "Flugsport" in Frankfurt, Germany, in the year 1937, and that "Exhibit 130a" is a translation of a part of said article (subject to correction if any error is contained therein), and that said "Exhibit 130" may be used in evidence with the same force and effect as an original, subject to any objection which may be made thereto as
irrelevant or immaterial when offered in evidence, viz;

> LYON \& LYON, /s/ FREDERICK W. LYON, Attorneys for Plaintiffs. /s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

Exhibit 130a
Translation from "Flugsport" No. 20
Sept. 29, 1937, p. 538-9
The "Centro Studi ed Esperience per il Volo a Vela" (Testing Station for Gliding Flight) of the Milan Royal Technical College exhibits the construction of the training glider "Asiago G.P. 2" on the stand of the National Royal Aeronautical Club.

The machine is the result of experience in the Asiago Glider School, and is intended for training in thermal current and cloud flying. The designers Garbell and Preti also made use of their experience with the "Grunau-Baby" of the Polish Komar, and with the "H 17." As respects cloud flight, the machine has a load factor of 9 , and air brakes on the upper side of the wing.

Profiles G 535 and M 6, with gradual transition. Most of the covering is pure Italian dural. In addition, all weak points that may be stressed use popular plywood instead of northern birch plywood. The fuselage is hexagonal in front, with a rounded
cowling, and merges behind into a rectangular section.

Wing span, 13.7 m ; length, 6.5 m ; area, 12.7 m 2 ; aspect ratio, $1: 14.8$; empty weight, 120 kg ; flying weight, 210 kg ; wing loading $16.5 \mathrm{~kg} / \mathrm{m} 2$; drag/lift ratio, $1: 20$; rate of descent, $80 \mathrm{~cm} / \mathrm{sec}$.

The "Pinguino G.P. 1" machine built last summer by the same designers, and which belongs to the Sperber class, could not be exhibited for lack of space. This machine was built merely for study, and will therefore not go into production. Directly after the exhibition, this machine, which has an interesting choice of profiles (NACA 0015, G 535, NACA 23012), will be subjected to thorough tests at the Sezze-Littoria (Agro Pontino) fields.

In our next number, we shall report in detail about the Aeronautica Lombardia, the successor to Aeronautica Bonomi, company's mid-wing "Alcione B.S. $28^{\prime \prime}$ designed by Silva.

Translated by W. G. Weekley.
Admitted November 24, 1950.

DEFENDANTS' EXHIBIT JJJ

District Court of the United States, Southern District of California, Central Division

Civil Action No. 10930-Y
MAURICE A. GARBELL, INC., a California Corporation, and GARBELL RESEARCH FOUNDATION, a California, Corporation, Plaintiffs, vs.

CONSOLIDATED VULTEE AIRCRAFT CORPORATION, a Delaware Corporation, and AMERICAN AIR LINES, INC., a Delaware Corporation,

Defendants.

STIPULATION \#17

It is hereby stipulated subject to proof of error that the appended "Exhibit 131" is a reproduction of page 5 of the Issue of October 16, 1937, of the printed publication "Le Vie Dell'Aria" published and issued by Editorial Aeronautica in Milan, Italy, and that "Exhibit 131a" is a translation of the article "Il Volo A Vela" (subject to correction if any error is contained therein), and that said "Exhibit 131"' may be used in evidence with same force and effect as an original, subject to any objection which may be made thereto as irrelevant or immaterial when offered in evidence, viz;

> LYON \& LYON,
> /s/ FREDERICK W. LYON, Attorneys for Plaintiffs.

Defendants' Exhibit JJJ-(Continued)

/s/ FRED GERLACH, /s/ ROBERT B. WATTS, Attorneys for Defendants.

$$
\begin{gathered}
\text { Exhibit 131a } \\
\text { Translation from Italian WB:FG }
\end{gathered}
$$

At the Milan Salon

Gliding

While at the first Aeronautical Salon of Milan gliding occupied a very modest position, at the recent Salon it has assumed the position and importance due it.

In accordance with the very great value attributed to gliding by the Germans, the German representative made a large contribution to this exhibition. The Minister of Aeronautics of Berlin presented at different stands, the technical and sporting results of his organizations. The N.S.F.K. (National Socialist Flying Corps) showed by various graphs, models, etc., their work in the field of gliding and aeronautical craftsmanship: about 20 regular gliding schools, about 200 gliding groups and a large number of schools in aeronautical construction are preparing future pilots and skilled workers for the Air Force and civilian aviation.

Among the gliding schools, there are some which give excellent instruction in blind flying, instrument navigation and aerobatics. The records attained by German gliding are: 41 hours flight, 4650 meters altitude and 504 kilometers distance. These figures confirm, even numerically, the great stage of development obtained by this branch of aeronautics.

Defeudants’Exhibit JJJ- (Continued)
The DUL Institute for aeronautical research is exhibiting a vertical wind tunnel for spinning tests constructed by the DFS (German Glider Research Institute).

The DFS is exhibiting, in its own stands, extremely interesting scientific material. In addition to the diagrams and photographs on weather study, which have been of such vital importance in the history of gliding, the DFS is exhibiting its own two aerodynamic smoke tunnels. By introducing into the current of air, thin smoke filaments, an attempt is made to study the very minute aerodynamic problems which ordinary aerodynamics cannot solve. In particular, the action due to the moving parts of the wing, such as flaps, flip increasors, air brakes, etc., can be evaluated with clearer precision. The DFS has developed, under the supervision of Alessandro Lippisch, two types of smoke tunnels, one economical, low priced type for elementary demonstration purposes for glider schools and a more involved type for scientific investigation. Particularly the second type has found great appreciation on the part of the representatives of the leading Italian scientific institutions.

The same Institute is also exhibiting a series of models of the main planes created by Engineers Lippisch and Jacobs.

The German glider industry has sent two of its best representatives, Hirth and Schweper. Hirth has brought to the exhibit his new two-seater Minimoa 2, a real masterpiece of precision and design. The Minimoa Goppingen 3, the Goppingen 4, a two-

Defeudants' Exhibit JJJ-(Continued)
scater with the seats arranged alongside each other for instruction purposes, and finally the Wolf, one of which is being tested at present at the glider school established at Sezze by the R.U.N.A., are also extremely interesting.

Schweyer however is exhibiting one of its most characteristic constructions, the "Habicht" plane for aerobatics, designed by Jacobs of the DFS. Of a structure similar to the Rhonsperber, which plane is designed for a speed officially measured at 400 kilometers per hour ; however, piloted by the "Commander of Glider Pilots," Hanna Reitsch, it has already repeatedly obtained speeds of more than 450 km . per hour. Its amazing ease of handling makes it possible to effect practically any stunt maneuver. The Italian Olympic squadron had an opportunity to see, in Berlin, the stunts of Hannah, among them front loops with two barrels while ascending, etc. The glider which was finally acquired also by the French champion, Marcel Thoret, is of beautiful mechanical and structural design. Also the flap mechanism, the ailerons, rudders and elevators are of a perfection rarely found in aeronautical construction, but rather found in optical and electrical apparatus.

The Habicht, together with the famous "slow" airplane Storch, had already the very high honor of being thoroughly inspected by the Duce during his stay in Germany at the Rechlin Camp.

Schweyer also exhibits the usual models of planes constructed by it, such as the two-seater Kranich,

Defendants' Exhibit JJJ-(Continued)
the Rhonsperber and a few other types of lesser importance.

To this group of German exhibitors, rich in more than 15 years of experience, there is added a small but courageous Italian representation.

The Aeronautica Lombarda (formerly the Aeronautica Vittorio Bonomi) presents the BS 28 dcsigned by Engineer Silva. There is concerned a glider with middle wing of 14.50 meters wing spar and an aspect ratio of 15 meters. Through a special selection of the profiles (G. 449, G. 693, NACA 23012 and NACA 0012) there has been obtained a very fine wing and at the same time a wing sufficiently rigid and light in weight. Along the trailing edges of the wing, camber flaps and the four ailerons follow each other. The ailerons are actuated by means of a special differential control so as to assure a greater amplitude of motion the outer ailerons than of the inner ailerons, thus obtaining a greater ease of handling. Also, the differential ratio between the two pairs of ailerons is rather high and reaches a value of $1: 2.5$. The plane is provided with flaps. The cabin is designed with special regard to visibility in all directions. As landing members there have been installed a skid and a single wheel undercarriage. The cowling covers not only the cockpit but also the junction of the wings. Upon removing same, everything is uncovered, which greatly facilitates the assembling of the plane. The wings are connected with each other by means of connections of duraluminum, while the fuselage is connected by means of only four bolts inasmuch

Defendants' Exhibit JJJ-(Continued)
as it does not have to support any bending force. In general, practically all the metal parts are of duraluminum. In all the points where the stresses are less, use is made of poplar plywood instead of birch plywood, and poplar and fir are used instead of spruce.

The Center for Gliding Studies and Experiments of the Royal Polytechnical is exhibiting at the stand kindly placed at its disposal by the R.U.N.A., a model shop, which, constructed during the period of the exhibition, the model of the "Asiago" glider the design for which had been made by the Milanese students, Preti and Garbell.

This Center organized in 1934 by the late Liberato De Amici was able, with the assistance of the Royal Polytechnical, to gradually develop during the last two years. The interest taken in same by Knight Commander Bonomi and by Engineer Amorosini and also the assistance of the aeronautical authorities have made it possible to continuously increase the work. Thus the meteorological section was able to organize, in agreement with the Ministry of Aeronautics, a weather study department, and lately also the model section has started a promising activity. Already this summer there has been built the "Pinguino G.P. 1 " which is now being perfected. There has now been created the G.P. 2 "Asiago" which was actually constructed at the exhibition. There is concerned a training plane for students who wish to qualify for a C and D license for thermal gliding and gliding in the clouds. The entire project was carried out with the intention

Defendants' Exhibit JJJ—(Continued) of reducing as much as possible the moments of inertia around the vertical and longitudinal axes in order to obtain a maneuverability of the aileron and foot (base?) harmonized with the always somewhat excessive maneuverability of the elevator. The experience obtained from the Asiago glider contest has brought about the development of the CVV (Gliding Center) flap which is not to be used for landing, which is already very easy with a glider of the Asiago kind, but is to permit students to avoid entering the clouds. While today a student who is drawn in by a thick cloud tries vainly to avoid zooming up into the cloud, the CVV flap has for its purpose increasing, without any strain on the plain, the speed of descent by at least 1 meter per second. Thus there is obtained a further safety device which will be appreciated both by the students and their instructors.

What we have already stated in connection with the BS 28 also applies to the use of independent equipment. The Asiago plane will be reproduced by the Aeronautica Lombarda, which has taken a special interest in the development of the model and of the future mass production of same. The plane, as also the BS 28 and the Pinguino, will pass the official gliding tests at the experimental field of Agro Pontino.
The Italian gliding exhibition finally includes a beautiful collection of the GUF of Rome which shows some fine projects of gliders and sailplanes in addition to an engine plane of Fidia Piatelli.

Gliding is obtaining the position it deserves also
vs. Maurice A. Garbell, Inc.
973
Defendants' Exhibit JJJ-(Continued) among us, as was the case in other countries. As His Excellency Valle stated at the Asiago contest, we have made great progress also in gliding in achieving the standing to which Italian aviation has arisen.

MAURIZIO GARBELL.
Admitted November 24, 1950.

ENGINEERING REPORT

CURTISS-WRIGHT CORPORATION

SAINT LOUIS AIRPLANE DIVISION
ROBERTSON, MISSOURI

TITLE ABHOUTNAMICS RSAPURT

Tro-Place Basic Combat, Model 23
Zngine - P \& W ikesp, S3Hl
Circular Proposal fo. 39-100
U.S.Army iype Specificetion No. C-901

Approvel in .in Ch. Fngz.
oate. February 20, 1939
APPROVALS. \qquad ar

a. Design groas welcht 4600 1bac. (hefe 5)

c. Wing Dfmenaioas

I P ilirfell section deaignation: Root: EY-23. (at conterind) Wing Splice: NACA 2314 (55.6 Ins. outboerd) T1p: Cr:-19 (15 ins. From tip)

II Totul supporting surface aree: $174 . \%^{\text {º }}$ sq.ft.
III Incidence: + ${ }^{*}$ (Chord plane reletive to Thrust Lime)
IV Dihedral: 5.50° on Chard plane.
V Sweepbeck: Trailing edes nomal to centerlime of Alrplane
d. Horizoatal Tuil Surfeces:

I Totul irau 25.56 sq.ft.
(Irclujing Blanketei ires
28.14 sq.ft.

II Spon
11.0 \% t .

III Zuximum Chord
3.76 ft .

IV Distance From Normel c.g. to $1 / 3$ Haximam Ghord point 184.65 in.
∇ Stabllizer Area 16.98 sq.ft.
Sormal position relative to Thrust line 30°
VI . Blevator Area (including tab) B.58 sq.ft.
2 Trim -tabs, arsa each . 35 sq.ft.

- Flaps

I The ming is equippod with split flaps over the centrol portion of the span. The flup exteade ovar the rear $10, \%$ of the wiag chord and is himes along its fombard aden.

II The dimensions and location of the plap ore fiomit on the was drawing, page 19 fig. St.

Rotio (flap chord) $/$ (ting shozti) $=.15$
 Totsl tlap area $=$ Fifthincits

Pup- 34


```
bl = spen of center panel - 55.6"
b
ftct = Total Wing arce = 174.3 sq.ft.
```

The mean slope of the lift curve, moment coefficient about the berodyamic center, and location of the serodymamic center are determiaed in the followiag calculations. Tables 3 and 4 present the average valuas of drag coefficient and angla of attack for the complete range of lift coofficients.

Aorodjabic Section Properties
(Ref. Fig. 6)

Item	${ }_{23}$	$\begin{aligned} & \text { NAGA } \\ & 2814 \end{aligned}$	$\begin{aligned} & \mathrm{C}-\mathrm{T}- \\ & 19 \end{aligned}$
$\mathrm{m}=$ Slope of lift curve for aspect ratio 7.08 $\mathrm{C}_{\mathrm{m}}=$ Momeat Coofficient thout terodynamic center a.c. = ierodynamic center in fructions of chord	$\begin{gathered} .0801 \\ -.002 \\ .232 \end{gathered}$	$\begin{gathered} .0805 \\ -.035 \\ .245 \end{gathered}$	$\begin{gathered} .0656 \\ -.055 \\ .236 \end{gathered}$

$\mathrm{m}_{\mathrm{av}}=[(.0801)(84.00)+(.0805)(71.45)] 55.5+[(.0805)(71.45)+(.0856)(38.23)$ 144(174.3)
$\mathrm{m}_{\mathrm{ev}}=.0816 / \mathrm{daz}$.
$C_{\text {mev }}=-\underline{-[(.0 C 2)(84.00)+(.035)(71.45][55.6+[[.035)(71.45)+(.055)(36.76] 149.4}$ (144)(174.3)
$C_{\text {Tuev }}=-. .6335$
(a.c. $)_{\mathrm{av}}=\frac{[(.232)(64.00)+(.245)(71.45)] 55.5+[(.245)(71.45)+(.236)(38.76)] 149.4}{(141)(174.3)}$
(a.c.) $)_{\mathrm{ar}}=.241$

The wing normal ond chord force coefficients for the complete range of ift coefficients of the mean wing ai ne are computed in Toble 5. The eccompanying pitching momeat, tall, anc alrplann force coefficients are computed in succeeding Tables for various specific losding and flight conditions of the eirplene.

The aircoil section at the centerline (rib l) is a symatricel section, genereted in the fillewing rancer: The upper contour of an N.A.C.A. $22^{2} 15$ airfoll secticn was reflected about the pecretric chord line to form a aymintricul airfoil of 19% thickness lying in a plane nomal to the plape of the chords. This resulting contour is designated as the cy-2s airfoil section, and to obtain the aerodynamic characteristics of that section, it was assumed to be equivalent to an N.A.C.A. 0019 airfoll asetion, The contours of the CW-28 airfoil section at rib 1, and of the N.A.C.A. 2316 airfoil section at rit 4 are obtainable from published N.A.C.A. alrtoil data. The contour and table of ordinates of the CW-19 alrfoll saction is given on page 28a. All sections are taken in a plane gormal to the plare of the ahords.

Anintince Cs Comolfhetectal
Pu*
 C.

vs. Maurice A. Garbell, Inc.983
DEFENDANTS' EXHIBIT 000
Report No. 19-C4
Curtiss-Wright Airplane Co.Robertson, Mo.
Engineering Department
Curtiss-Wright Sparrow, Model 19L (2PCLM)
1 Lambert R-266, 90 H. P. EngineModification of Wing
Structural Considerations
Submitted By
/s/ LLOYD F. ENGELHARDT
Section. . . Structures.
No. of Pages: 11. Date: Oct. 3, 1935.
Revisions
Pages
Date Affected Remarks
Modification of Wing
Introduction:In order to meet the especially rigid require-ments of a particular customer relative to stallingand spinning it was found necessary to modify thecontour of the airfoil section in the outer portion

Defendants' Exhibit OOO-(Continued) of the wing and at the same time to give the wing tip a certain amount of "wash-out."
'To accomplish these changes an outer shell is added which extends below and slightly forward of the original lines. The plan form on Page 2 shows the change in area. The airfoil section on Page 3 shows the modification of the airfoil at the station 15 inches inboard of the tip (designated as A on page 2). On page 4 is a foreshortened plot of the mean camber lines of the modified airfoil and several of the N.A.C.A. series.

Drawing No. 19-03-13 gives all details of construction of the outer shell addition.

$$
\begin{array}{r}
1 \\
\\
\\
\text { (A) }
\end{array}
$$

-1vs. Maurice A. Garbell, Inc.989
Defendants' Exhibit OOO-(Continued)
Report No. 19-Y3
Curtiss-Wright Airplane Co.
Robertson, Mo.
Engineering Department
Curtiss-Wright Sparrow, Model 19L(2PCLM)
1 Lambert R-266, 90 H.P. Engine
Flight Tests
Sparrow No. 1
Submitted By
C. W. Scott. SectionNo. of Pages
Date $9 / 19 / 35$Revisions
PagesDate Affected Remarks
Flight No. 2

Date, $7 / 29 / 35$
Take-Off, $6: 30$ A.M.
Land, 7:15 A.M.
Place, Lambert Field
Sta. Temp. 92.
Sta. Wind, E. 5
Sta. Bar., 29.98
Gross Weight, 1,668
C. G. 22.65

Propeller Diameter, 6.5'
Propeller Pitch, 16 Deg.

Pilot, E. K. Campbell
Observer, C. W. Scott

Fuel Pressure, 2.5
Oil Pressure, 65.
Full Throttle.
CAS. TAS
$\begin{array}{llllll}2000 & 80 & 105 & 2270 & 109 & 115.3\end{array}$
Power Stall, Flaps Up, 54 I.A.S., Power Off, Flaps Down, 52 "

47 C.A.S. Vicious Stall-Fell to right.
44 C.A.S. Vicious Stall-Fell to right.
On landing, it was found the L.H. landing gear did not stay up.
After this flight the following work was done on the ship:

1. Repair safety catch, left hand gear.
2. Install strings on right hand wing.

The takeoff characteristics were poor, no doubt due in part to the fact that the fixed slot was stalled thruout take-off. The time to accelerate to flying speed seems too much. The take-off speed was approximately 50 mph indicated air speed. Landing speed, 45 mph .

None of these speeds are calibrated.

Defendants' Exhibit OOO-(Continued)
On this flight considerable back pressure was observed on \#1 and \#2 cylinders. These two cylinder's were also running at the highest head temperature. A new manifold will be tried with larger tubing on these two cylinders to correct this trouble.

Previous to this flight the ship was weighed and the C.G. located at 22.65% of the M.A.C.

Results of this flight:

1. Ailerons good but too much lag.
2. Elevators very sensitive.
3. Rudder light and mushy at stall.
4. Stalls vicious and sudden with no warning.

The following work was done for flight \#3:

1. Remove and inspect safety catch on L.H. landing gear.
2. Install silk threads on R.H. wing.

Report No. 19-Y4
Curtiss-Wright Airplane Co.
Robertson, Mo.
Engineering Department
Curtiss-Wright Coupe, Model 19L
1 Lambert R-266, 90 H.P. Engine
Summary of Flight Tests
Coupe No. 1
Submitted By
C. W. Scott

Section
No. of Pages 15
Date Nov. 22, 1935.

Consol. Vultee Aircraft Corp., etc.
Defendants' Exhibit OOO-(Continued)
Revisions
Pages
Date Affected
Remarks

Introduction

'The Model 19L has been run through a long series of very special flight tests. The purpose of this report is to draw conclusions from the results obtained rather than to go in to the detail of all of the different phases of the flight tests conducted. Briefly, the purpose of all of these tests has been first, to eliminate what was considered an undesirable stall characteristic of the basic airplane; second, to obtain satisfactory power plant cooling and operation; and third, a thorough check on the aerodynamic characteristics of the ship.

The results of the flying that has been accomplished on the Model 19L as finally modified are contained briefly in this report.

Admitted November 24, 1950.

sectio	ON	DER	VED	FRO	OU	[16.	, 3																			
		,	,																							
		-	-																							
			,	,																						
		-		-																						
						C=	CHO	RD $=1$	10																	
				,		,	.,																			
						- ${ }^{\text {, }}$	-	T=7	THi	ck	KNES	\$s	$=$	1.9												
				.		.	,				,															
			,		.	-	.			.	.			-	-											
		¢				.																				
		,			,	.	,	,	-	-	EAN	${ }^{\text {OA }}$	IV8	ER	LTNE											
										-					,											
							.	3	,	,					-					-						
						7	,							,	-								-			
			-		1	I\#		.						-	,											
		cmor	D					+																		
						.	${ }^{-2}$	${ }^{-1}$	N-M	MEA	As	can	88	*-	- 48%											
						,		,	-	,		-		-	-											
											E-C1	UEE	3													
								S.-	EAI	IEN	NT.	\#1.	54	7. 6.	4.		20NS									
								-		-	-			-												
						MEA	AN	CAM	SER	${ }^{2}$.	$=\mathrm{M}$	$1{ }^{\circ}$	$=$	4.8	\% 0	${ }^{-1}$	CHOR									
															19.											
						-	10,	Nes\%		Rar	rio				2.3.	6.	(or		,							

-
, \square
H,

$$
\text { - } \operatorname{Fos} \boldsymbol{F}
$$

Sex

DEFENDANTS' EXHIBITS REFERRED TO IN ANSWER TO INTERROGATORY XVII

$1111+1=11$

CONVAIR 240 - ENGINEERING DATA BUUK
3.0201 AWPCKTFOJVSBRY 9-19-1.6R
VIEW SHOWING RELATION BETWEEN ROOT, BREAK,
AND TIP CHORD PIANES AND MANNER IN WHICH
THE DEGREE OF WASHOUT IN WING IS MEASURED.
INCIDENCE ANGLE $4{ }^{\circ}$ REF.
Non

vs. Maurice A. Garbell, Inc.1005
Consolidated Vultee Aircraft Corporation San Diego Division
Page 10
Report No. ZD-240-040
Model 240
Date
3.0 Characteristics
3.5 Dimensions and Areas:
3.5.1 Wing Group :
Airfoil Section Designation:
Root30.7% Semispan NACA 63.4-419
Tip NACA $63.4-515$
Aerodynamic Washout $1^{\circ} 12^{\prime}$
Wing Area 817 sq. ft.
Span (overall) 91 ft. 9 in.
Root Chord 13 ft .6 in.
Tip Chord 4 ft .6 in.
Taper Ratio (approximate) 3:1
Incidence Root 4°
Dihedral (reference Plane) $4^{\circ} 50^{\prime}$
Sweepback (at 40% chord) $2^{\circ} 30^{\prime}$
Aspect Ratio 10
Mean Aerodynamic Chord (true) . . . 9 ft. 8.6 in.
3.5.3 Body Group:Maximum Fuselage Cross Section:
Height 9 ft .5 in.
Width 9 ft .5 in.
Length, overall 74 ft .8 in .
Height over tail (3-point position) 26 ft .11 in.
Thread of main wheel 2.5 ft .0 in .

[^3]
[^0]: ${ }^{\prime}$ Th. von Karman, F.. 1E. Sechler, and Donnell. The Strenath of Thin Plates in Compression, Applied Mechanics Tranactionn A.S.M.F... June, 1932.
 E. E. Sechler, The Ultimate Compressize Strength of Thit Sheef Mctal Pancls. Thesis a: Calif. Inst. of Tech. 1934.
 ${ }^{\text {' Eugene F. Lundquist, Comparison of Thres Methinds fur }}$ Calculatine the Compressite Sircnyth of Flat and Sliuhthy Cured Shect and Stiffener Combinations, NACA Tech. Ni,te Vo. $455,1933$.

[^1]: - Jacobs, Ward and Pinkerten. The Characteristics of is Related Airfoil Sections from Tests in the larialile Density II'ind Twnerl, N.A.C.A. Tech. Keport 4on. 193.3.
 ${ }^{5}$ Fred F. Weick \& Kobert Sanders. U'ind Tinnnel Tests on Combinations of a l'ing uith Fired Auxiliary Siurfacrs llazing l'arions (hurds and I'rofiles, N.A.C.A. Tech. Keport liz. 193.3.

[^2]: - See p. 58 (Chap. V).
 \dagger See pp. 59 and (iv) (Chap. 11 . See p. 10) (Chap. 1).

[^3]: .

